iSIGHT 基本培训 参数和定义问题
参数(Parameters) 参数是指定义优化问题的数字的名称 它们提供设计过程中的开始点, 边界条件和目标函数
问题定义(Problem Definition) iSIGHT 中使用界面来定义设计开发问题 通常,有三个任务管理器按钮与问题定义有关 参数(Parameters) 任务设计(Task Plan) 数据库(Database)
用户定义参数 变量(Variables) 目标函数(Objectives) 问题的输入参数,由 iSIGHT干预 也包括 “潜在的变量”,常数(constants) 目标函数(Objectives) 求数值的最大或最小值 通常作为输出,也可作为输入
更多的用户定义参数 约束条件(Constraints) 辅助参数( Auxiliary Parameters ) 设计参数的界限 优化问题的目标 辅助参数( Auxiliary Parameters ) 指那些在设计开发期间没有直接影响的参数
iSIGHT 定义参数 目标函数(Objective) 可行性(Feasibility) 与以前所有的结果作比较,现在设计的可行性 任务过程状态(Task Process Status) 显示模拟代码退出状态 缺省值 < 0
Objective = S (WiXi)/SFi 由用户指定所有参数当前值的权重,由公式得到目标函数: Objective = S (WiXi)/SFi 由于最小化的目标函数被增强了,而最大化的目标函数被减弱了。因此,通过优化,目标函数应该降低
Objective = S (WiXi)/SFi = (2 * 640) / 1000 - (1 * 0.83) / 1.0 = 0.45 目标函数举例 最小化质量和最大化效率 Mass = 640 ScaleFactor = 1000 Weight = 2.0 Efficiency = 0.83 ScaleFactor = 1.0 Weight = 1.0 Objective = S (WiXi)/SFi = (2 * 640) / 1000 - (1 * 0.83) / 1.0 = 0.45
罚函数( Penalty ) 从违反约束( constraint violations )计算 约束( Constraint ): 等式约束: (hk(x) - Target) Wk/SFk = 0 不等式约束: (LB - gj(x)) Wj/SFj<= 0 不等式约束: (gj(x) - UB) Wj/SFj<= 0 违反约束( Constraint Violations ): 违反等式约束: (hk(x) - Target) Wk/SFk 违反不等式约束: (LB - gj(x)) Wj/SFj 违反不等式约束: (gj(x) - UB) Wj/SFj
罚函数用来处罚坏的设计点;那些违反约束的点 罚函数( Penalty ) (2) 罚函数用来处罚坏的设计点;那些违反约束的点 Penalty = base + multiplier*S (violationexponent) 缺省值: base = 10, multiplier = 1,exponent = 2 Penalty = 10+1*S (violation2) Stress = 19, UB = 16, ScaleFactor = 100, Weight = 2.0 Violation = (19 - 16) * 2.0/100 = 0.06 Penalty = 10 + 1 * (0.062) = 10.0036
目标函数和罚函数 代表设计的数字“可行性”(feasibility) 对于一个特殊的设计点,目标函数值和罚函数值的总和 ObjectiveAndPenalty = Objective + Penalty ObjectiveAndPenalty = 0.45 + 10.0036 = 10.4536
可行性,一个整数( Feasibility, an Integer ) 显示当前设计点的可行性, 与以前的点进行比较以做出评价 可行性 含义 1 不可行 (违反约束) 2 hard infeasible tie 3 hard infeasible better 4 soft infeasible (DHS) 5 soft infeasible tie (DHS) 6 soft infeasible better (DHS) 7 可行 (满足约束) 8 feasible tie (与以前最好的一样好) 9 非常可行 (目前最好的)
启动iSIGHT,点击Parameters
参数(Parameters )表格
输出按钮选项 目标函数和 约束已定义 目标函数 箭头表明方向 粉红色边框 表明违反约束
输入参数( Inputs ) 输入当前值 和上下边界 一个变量也是 一个目标函数 不是所有的 输入都是变量
图例( The Legend )
所有的参数 – 所有的列 问题完 全定义 注明权重和比例因子 可以寻找,分类和定制布局