概 率 统 计 主讲教师 叶宏 山东大学数学院.

Slides:



Advertisements
Similar presentations
1 §2.2 离 散 型 随 机 变 量 §2.1 随 机 变 量 的 概 念 §2.3 超几何分布 · 二项分布 · 泊松分布 1. “0-1” 分布 ( 两点分布 ) 3. 二项分布 4. Poisson 分布 2. 超几何分布 n →∞ , N→∞ , (x = 0, 1, 2, , n) (x.
Advertisements

随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第二章 随机变量及其分布 在第一章里,我们研究了随机事件及其概率.而对于一个随机试验,我们除了对某些特定的事件发生的概率感兴趣外,往往还会关心某个与试验结果相联系的变量.由于这一变量依赖于试验结果,因而这一变量的取值具有随机性,这种变量被称为随机变量.本章将着重介绍两类随机变量——离散型随机变量和连续型随机变量及其分布.
离散随机变量及分布律 定义 个或可列个, 则称 X 为离散型随机变量 描述X 的概率特性常用概率分布或分布律 即 X 或 P §2.2
量 及 变 其 机 分 随 布 第 章 二.
概率论与数理统计 2.2 离散型随机变量及其分布.
§2.2 离散型随机变量及其分布 离散型随机变量的概念 定义 若随机变量 的可能取值是有限多个或无穷可列多个,则称 为离散型随机变量.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
第2章 随机变量及其分布 2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布
3.1.3 概率的基本性质.
第三章 函数逼近 — 最佳平方逼近.
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
第四章几种重要的分布 4.1 二项分布 4.2 超几何分布 4.3 普哇松分布 4.4 指数分布 4.5 Γ-分布 4.6 正态分布.
《高等数学》(理学) 常数项级数的概念 袁安锋
第二节 离散型随机变量 及其分布律 一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结.
第二章 随机变量及其分布 关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
2-7、函数的微分 教学要求 教学要点.
第四章 随机变量的数字特征 第一节 数学期望 第二节 方差 第三节 协方差及相关系数 第四节 矩、协方差矩阵.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
北京师范大学珠海分校 国际特许经营学院与不动产学院 学年第二学期 欧阳顺湘
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第二章 随机变量及其分布 §1 随机变量 §2 离散型随机变量及其分布 §3 随机变量的分布函数 §4 连续型随机变量及其概率密度
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
第八章 常用统计分布.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
离散型随机变量.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
§2.2 离散型随机变量及其概率分布 离散随机变量及分布律 定义 若随机变量 X 的可能取值是有限多个
第二章 随机变量及其分布 第一节 随机变量 第二节 离散随机变量及分布律 第三节 随机变量的分布函数 第四节 连续随机变量及概率密度
函 数 连 续 的 概 念 淮南职业技术学院.
第二章 随机变量及其分布 关键词: 随机变量 概率分布函数 离散型随机变量 连续型随机变量 随机变量的函数.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
Ch5 一维随机变量.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
难点:连续变量函数分布与二维连续变量分布
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
§4.1数学期望.
Presentation transcript:

概 率 统 计 主讲教师 叶宏 山东大学数学院

§2.2 离散型随机变量及分布律 定义 个或可列个, 则称 X 为离散型随机变量 描述X 的概率特性常用概率分布或分布律 即 X 或 P

或 X ~ 分布律的性质 非负性 归一性 用性质可以判断 是否为分布律

离散型随机变量的分布函数 其中 . 值 xk 处发生间断, 间断点为第一类跳跃间 断点,在间断点处有跃度 pk . 其中 . F( x) 是分段阶梯函数, 在 X 的可能取 值 xk 处发生间断, 间断点为第一类跳跃间 断点,在间断点处有跃度 pk .

例1 设汽车在开往甲地途中需经 过 4 盏信号灯, 每盏信号灯独立地 以概率 p 允许汽车通过. 令 X 表示 例1 设汽车在开往甲地途中需经 过 4 盏信号灯, 每盏信号灯独立地 以概率 p 允许汽车通过. 令 X 表示 首次停下时已通过的信号灯盏数, 求 X 的概 率分布与 p = 0.4 时的分布函数. 解 出发地 甲地

k pk 0 1 2 3 4 代入 0.6 0.24 0.096 0.0384 0.0256 ] • ] ] • x ] • 1 2 3 4 x

x F( x) 1 • • o • o • o • o o • 1 2 3 4

用分布律或分布函数来计算事件的概率 例2 在上例中, 分别用分布律与分布函数计 算 解 或 此式应理解为极限

例3. 设随机变量X的概率函数为: k =0,1,2, …, 试确定常数a . 解: 依据概率函数的性质: P(X =k)≥0, a≥0 欲使上述函数为概率函数 应有 a≥0 从中解得 这里用到了常见的 幂级数展开式

常见离散型随机变量的分布 超几何分布 1.超几何分布 例 设有 N 件产品,其中有 M 件次品,现从中任取 n 件,用 X 表示其中的次品数,求其分布律。 超几何公式 超几何分布

例 某射手连续向一目标射击,直到命中为止,已知他每发命中率是 p,求所需射击发数X 的分布律. 2.几何分布 例 某射手连续向一目标射击,直到命中为止,已知他每发命中率是 p,求所需射击发数X 的分布律. 解: 显然,X 可能取的值是1,2,… , Ak = {第k发命中},k =1, 2, …, P(X=1)=P(A1)=p,

若随机变量X的概率分布如上式,则称X具有几何分布. 不难验证:

X 0 1 Pk 1 - p p 0 < p < 1 凡试验只有两个结果, 常用0 – 1 应用 场合 3. 两点分布(0 – 1 分布) X 0 1 Pk 1 - p p 0 < p < 1 或 凡试验只有两个结果, 常用0 – 1 应用 场合 分布描述, 如产品是否合格、人 口性别统计、系统是否正常、电力消耗 是否超标等等.

4. 二项分布 n 重Bernoulli 试验中, X 是事件A 在 n 次试 验中发生的次数 , P (A) = p ,若 则称 X 服从参数为n, p 的二项分布,记作 0–1 分布是 n = 1 的二项分布

二项分布的取值情况 设 .039 .156 .273 .273 .179 .068 .017 .0024 .0000 0 1 2 3 4 5 6 7 8 由图表可见 , 当 时, x P • 1 2 3 4 5 6 7 8 分布取得最大值 0.273• 此时的 称为最可能成功次数

设 .01 .06 .14 .21 .22 .18 .11 .06 .02 .01 .002 < .001 0 1 2 3 4 5 6 7 8 9 10 11 ~ 20 • x P 1 3 5 7 9 2 4 6 8 10 20 由图表可见 , 当 时, 0.22 • 分布取得最大值

二项分布中最可能出现次数 当( n + 1) p = 整数时,在 k = ( n + 1) p与 ( n + 1) p – 1 处的概率取得最大值 当( n + 1) p  整数时, 在 k = [( n + 1) p ]处的概率取得最大值 [x] 表示不超过 x 的最大整数

令X 表示命中次数,则 X ~ B(400,0.01) 例 独立射击400次, 命中率为0.01, 求 (1) 最可能命中次数及相应的概率; 例 独立射击400次, 命中率为0.01, 求 (1) 最可能命中次数及相应的概率; (2) 命中次数不少于3次的概率. 令X 表示命中次数,则 X ~ B(400,0.01) (1) k = [( n + 1)p ] = [( 400+ 1)0.01] =4 问题 如何计算 泊松近似

若 其中 是常数,则称 X 服从参数为 的泊松(Poisson)分布. 或 记作 在某个时段内: 5. 泊松分布 应用场合 市级医院急诊病人数; 某地区拨错号的电话呼唤次数; 某地区发生的交通事故的次数. 一本书一页中的印刷错误数.

泊松分布的图形特点: 泊松分布中最可能出现次数 当λ= 整数时,在λ与λ– 1 处的概率取得最大值 当λ 整数时, 在 [λ]处的概率取得最大值

例 一家商店由过去的销售记录知道,某种商品每月的销售数服从参数λ=5 的泊松分布,为了以95%以上的把握保证不脱销,问商店在月底至少应进该种商品多少件? 设该商品每月的销售数为X ,月底应进m件商品 P(X≤m)>0.95 P(X>m) ≤ 0.05 查泊松分布表得 m+1=10, m=9件

二项分布的泊松近似 当试验次数n很大时,计算二项概率变得很麻烦,必须寻求近似方法. 历史上,泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入的. 我们先来介绍二项分布的泊松近似,后面我们将介绍二项分布的正态近似.

Possion定理 设 , 则对固定的 k 结论 二项分布的极限分布是 Poisson 分布 若X ~ B( n, p), 则当n 较大,p 较小, 则 n > 10, p < 0.1时近似效果较好

利用Poisson定理再求前例 令X 表示命中次数,则 X ~ B(400,0.01) (2) 命中次数不少于3次的概率. (2) 命中次数不少于3次的概率. 令X 表示命中次数,则 X ~ B(400,0.01) 泊松近似 查附表3泊松分布表

例 保险公司里有2500人参加某种事故保险,每人每年付120元保险费,在一年中一个人发生此种事故的概率为0 例 保险公司里有2500人参加某种事故保险,每人每年付120元保险费,在一年中一个人发生此种事故的概率为0. 002,发生事故时家人可向保险公司领得20000元. 问: (1) 对该项保险保险公司亏本的概率有多大? (2) 该项保险的利润不少于10万元的概率有多大? 令X 表示出事故人数,则 X ~ B(2500,0.002) 亏本 泊松近似 几乎不亏本 利润不少于10万 可能性极大