第三章 直线与平面、 平面 与平面的相对位置 内 容 提 要 §3-1 直线与平面平行 • 平面与平面平行 第三章 直线与平面、 平面 与平面的相对位置 内 容 提 要 §3-1 直线与平面平行 • 平面与平面平行 §3-2 直线与平面相交 • 平面与平面相交 §3-3 直线与平面垂直 • 两平面垂直 §3-4 点、线、面综合题举例
1、在投影图上如何绘制及判断直线与平面和平面与平面的平行问题。 2、如果直线与平面和平面与平面不平行,在投影图上如何求其交点或交线。 本章重点讨论的三个问题: 1、在投影图上如何绘制及判断直线与平面和平面与平面的平行问题。 2、如果直线与平面和平面与平面不平行,在投影图上如何求其交点或交线。 3、在投影图上如何绘制及判断直线与平面和平面与平面的垂直问题。 返回
一 平行问题 1、直线与平面平行 若一直线平行于某平面上的任一直线,则该直线与平面平行。 据此可以解决: 1. 作直线平行于已知平面 一 平行问题 1、直线与平面平行 若一直线平行于某平面上的任一直线,则该直线与平面平行。 据此可以解决: A B C E F a b c e f D d 1. 作直线平行于已知平面 2. 作平面平行于已知直线 3. 判断直线是否与平面平行
例 3-1 试过点N作水平线MN平行于ΔABC平面 分析 b’ a b c n a’ c’ n’ X O 作图 1. 在ΔABC平面上任作一水平线BD d’ m’ 2. 过点N作直线MN平行与直线BD 直线 MN 即为所求 m d
例 3-2 试过点A作平面ΔABC平行于直线MN 分析 n’ 作图 a' 1. 作直线AC∥MN X O c’ 2. 过点A任作直线AB a ΔABC 即为所求 m b n c
例 3-3 试判断直线EF是否平行于平面ΔABC 分析 e’ 作图 f’ 在ΔABC平面上任作一辅助线CD,且使c’d’∥e’f’(或cd∥ef) b’ d ’ X O a’ 2. 求出ΔABC上的CD直线的另一投影cd(或c’d’) b d c f 因ef不平行cd故EF不平行于 ΔABC e a
2、平面与平面平行 若一平面内两相交直线对应平行于另一平面上的相交两直线,则这两平面相互平行。 据此可以解决: 1. 作平面平行于已知平面 A B C A1 B1 C1 P Q 1. 作平面平行于已知平面 2. 判断两平面是否平行
例3-4 试作ΔEFG∥ΔABC平面 分析 b’ a b c e a’ c’ X O f f’ g m’ n’ 作图 e’ g’ n m 在ΔABC内作直线AM∥EF,MN∥FG(am∥ef,mn∥fg) e’ g’ n 2. 求出AM ,MN的正面投影 3. 过f’作e’f’∥a’m’、f’g’∥m’n’,则ΔEFG即为所求 m
例3-5 判断ΔEFG与ΔABC平面是否平行 f’ c’ 分析 g’ b’ e’ a’ X O g b a f c e
例3-6 判断两平面是否平行 分析 f’ b’ d’ g’ e’ a’ c’ h’ c e a h f d b g
例3-7 判断两平面是否平行 c’ f ’ b’ e’ a’ d’ e a f d b c
面面平行的特殊情况 若两平行平面同时垂直于同一投影面,则它们在该平面上的积聚性投影必然相互平行,且反映两平行平面之间的真实距离。 G A F B E b C H a e c f h
g’ a’ f’ b’ e’ h’ c’ g e b a f h c
二 相交问题 直线与平面相交,必有一个交点,它是直线与平面的共有点。 平面与平面相交,必有一条交线,它是两平面的共有线。 求解交线的方法: 二 相交问题 直线与平面相交,必有一个交点,它是直线与平面的共有点。 平面与平面相交,必有一条交线,它是两平面的共有线。 求解交线的方法: 1. 作出交线上的两个共有点 2. 作出交线上的一个共有点及交线的方向 求作交点或交线的过程: 1. 求出交点或交线的投影 2. 判别可见性
§3-2 直线与平面相交 两平 面相交 一、利用积聚性求交点和交线 1. 一般位置直线与特殊位置平面相交
b’ a’ c’ b a c e’ f’ e f F A K B E b C k f a e c
y1>y2,即点Ⅰ在点Ⅱ前方,EK正面投影可见 a’ 作图步骤 f’ 1. 利用积聚性求出K点水平投影k 2. 利用点在线上的投影特性求出K点正面投影k ’ k’ b’ 1’(2’) e’ c’ 3. 判别可见性 b f 2 y1>y2,即点Ⅰ在点Ⅱ前方,EK正面投影可见 1 k e a c
y1>y2,即点Ⅰ在点Ⅱ前方,EK正面投影可见 a’ 作图步骤 f’ 1. 利用积聚性求出K点水平投影k 2. 利用点在线上的投影特性求出K点正面投影k ’ k’ b’ 1’(2’) e’ 3. 判别可见性 c’ b y1>y2,即点Ⅰ在点Ⅱ前方,EK正面投影可见 f 2 k e a 1 c
§3-2 直线与平面相交 两平 面相交 一、利用积聚性求交点和交线 1. 一般位置直线与特殊位置平面相交 §3-2 直线与平面相交 两平 面相交 一、利用积聚性求交点和交线 1. 一般位置直线与特殊位置平面相交 2. 特殊位置直线与一般位置平面相交
b’ 分析 EF在正面的投影有积聚性,故交点K的正面投影必与EF的正面投影重合,利用面上取点的方法可求出交点K的水平投影 d’ e’(f’) k’ c’ a’ f c a k 作图 d e b
b’ d’ e’(f’) k’ c’ a’ f c a k d e
一、利用积聚性求交点和交线 1. 一般位置直线与特殊位置平面相交 2. 特殊位置直线与一般位置平面相交 3. 特殊位置平面与一般位置平面相交 §3-2 直线与平面相交 两平 面相交 一、利用积聚性求交点和交线 1. 一般位置直线与特殊位置平面相交 2. 特殊位置直线与一般位置平面相交 3. 特殊位置平面与一般位置平面相交
2. 利用点在线上的投影特性求出K点正面投影k ’,l’ V X O A B C E D F c a b e f d d’ c’ l’ K L k’ b’ 1’(2’) e’ f’ a’ c d f k l k l b 1 2 e 作图步骤 a 1. 利用积聚性求出KL的水平投影kl 2. 利用点在线上的投影特性求出K点正面投影k ’,l’ 3. 判别可见性
d’ c’ l’ k’ b’ e’ f’ a’ d c f k l b e a
一、利用积聚性求交点和交线 二、利用辅助平面求交点和交线 1. 一般位置直线与特殊位置平面相交 2. 特殊位置直线与一般位置平面相交 §3-2 直线与平面相交 两平 面相交 一、利用积聚性求交点和交线 1. 一般位置直线与特殊位置平面相交 2. 特殊位置直线与一般位置平面相交 3. 特殊位置平面与一般位置平面相交 二、利用辅助平面求交点和交线 一般位置直线与一般位置平面相交
作图 判别可见性 Z1>ZM, AK的水平投影ak可见 YⅡ>YⅢ, AK的正面投影a’k’不可见 e’ F A a’ 2’(3’) n’ d d’ a b f e b’ a’ e’ f’ F E D B A 2’(3’) n’ m’ M N 1’ M k’ 作图 判别可见性 3 Z1>ZM, AK的水平投影ak可见 m 1 k YⅡ>YⅢ, AK的正面投影a’k’不可见 n 2
作图 判别可见性 Z1>ZM, AK的水平投影ak可见 YⅡ>YⅢ, AK的正面投影a’k’不可见 e’ F A a’ 2’(3’) n’ d d’ a b f e b’ a’ e’ f’ F E D M N B A m n n’ m’ k’ k 作图 判别可见性 1 1’ Z1>ZM, AK的水平投影ak可见 2’(3’) 2 YⅡ>YⅢ, AK的正面投影a’k’不可见 3
§3-2 直线与平面相交 两平 面相交 一、利用积聚性求交点和交线 二、利用辅助平面求交点和交线 1. 一般位置直线与特殊位置平面相交 §3-2 直线与平面相交 两平 面相交 一、利用积聚性求交点和交线 1. 一般位置直线与特殊位置平面相交 2. 特殊位置直线与一般位置平面相交 3. 特殊位置平面与一般位置平面相交 二、利用辅助平面求交点和交线 一般位置直线与一般位置平面相交
例3-8 求作两平面的交线并判断可见性 a’ e’ h’ f’ 1’ 3’ b’ c’ d’ g’ 2’ d g a 2 c 3 e f h b
§3-3 直线与平面垂直 • 两平 面垂直 一、直线与平面垂直 若一直线垂直于一平面,则必垂直于属于该平面的一切直线。 据此可以解决: §3-3 直线与平面垂直 • 两平 面垂直 一、直线与平面垂直 若一直线垂直于一平面,则必垂直于属于该平面的一切直线。 据此可以解决: 1. 作直线垂直平面或平面垂直直线 2. 判断线面是否垂直 作 图 举 例:
若一直线的水平投影垂直于属于平面的水平线的水平投影;直线的正面投影垂直于属于平面的正平线的正面投影、则直线必垂直于该平面。
若一直线垂直于一平面、则直线的水平投影必垂直于属于该平面的水平线的水平投影;直线的正面投影必垂直于属于该平面的正平线的正面投影。 k’ l’ k l
例 3-9 平面由Δ BDF给定,试过定点K作平面的法线。 在△BDF上作正平线DC和水平线AB h’ 2. 作k’h’ ⊥d’c’; kh ⊥ab c’ a’ a F C A H h B c K D 返回
例 3-10 平面由两平行线AB、CD给定,试判断直线MN是否垂直于定平面。 e’ f’ DC为正平线 , 判断m’n’是否垂直d’c’ e f 2. 在平面内作水平线EF , 判断mn是否垂直ef 直线MN不垂直给定平面
例题 3-11试过定点S作一平面垂直于已知直线EF。 n’ N F f’ M E m’ S s’ e’ X O n e s 过S点分别作正平线 SN 、 水平线SM, 使 水平SN⊥EF SM⊥EF m f
§3-3 直线与平面垂直 • 两平 面垂直 一、直线与平面垂直 二、平面与平面垂直 §3-3 直线与平面垂直 • 两平 面垂直 一、直线与平面垂直 二、平面与平面垂直 若一直线垂直于定平面则包含该直线的所有平面都垂直于该平面。 据此可以解决: 1. 作平面垂直平面 2. 判断面面是否垂直 实质问题是作垂直面
例 3-12平面由Δ BDF给定,试过定点K作平面垂直Δ BDF 。 h’ m’ c’ a’ a h m c
例3-13判断 Δ DEF 、 Δ GHK是否与 Δ ABC垂直。 m’ b’ k’ h’ e’ c’ g b f m h a d h e Δ DEF ⊥Δ ABC Δ GHK⊥Δ ABC c
§3-4 点线面综合题举例 画法几何问题,归纳起来大体分为定位问题和度量问题两大类。 (1) 题意分析 §3-4 点线面综合题举例 画法几何问题,归纳起来大体分为定位问题和度量问题两大类。 (1) 题意分析 分析有哪些几何条件,有无几何元素在空间处于特殊位置,明确求解的几何元素或几何量。 (2) 空间分析 轨迹分析法 逆推法 (3) 投影作图 (4) 解答分析
例题 3-14 过点K作直线KS平行于三角形ABC并与直线EF相交。 空间分析 A C B e’ c’ b’ a’ k’ f’ e a f k c b K E F S s’ (1) 过K作平面平行三角形ABC s (2) 求出EF与辅助平面的交点S (3) 连KS即为所求
(这里给出另一种解法的空间分析,具体作图读者自己完成.) 例题3-14 过点K作直线KS平行于三角形ABC并与直线EF相交。 (这里给出另一种解法的空间分析,具体作图读者自己完成.) e’ c’ b’ a’ k’ f’ e a f k c b 空间分析 M N A C B E F K S 1.求出两平面的交线MN 2.过K作KS平行MN
例 3-15 求交叉两直线AB和CD的公垂线MN。 作图步骤 1.包含CD 作一平面Q与AB平行 2.过A作AK垂直平面,求出垂足K d’ 3.过K作 KM平行AB交CD于M a’ c’ 4.过M 作MN平行AK交AB于N b d 空间分析 B A a N c K E D C M