§4.2 序列相关性 Serial Correlation.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第五章 经典单方程计量经济学模型:专门问题
非线性时间序列模型 一般非线性时间序列模型介绍 条件异方差模型 上海财经大学 统计与管理学院.
3.2.平稳性检验的单位根方法 单位根检验方法 DF检验 ADF检验 PP检验 KPSS检验 ERS检验 NP检验.
第三章 经典单方程计量经济学模型:多元线性回归模型
第三章 异方差和自相关.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
第四章 回归假设的二级检验: 计量经济学检验
第三章 函数逼近 — 最佳平方逼近.
10.2 立方根.
§4.3 多重共线性 Multi-Collinearity.
第六章 多重共线性 (Multi-Collinearity)
第四章 经典单方程计量经济学模型:放宽基本假定的模型
Multicollinearity 一、多重共线性的概念 二、多重共线性的后果 三、多重共线性的检验 四、克服多重共线性的方法 五、例题
第二章 经典单方程计量经济学模型: 一元线性回归模型
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
计量经济学 第六章 自相关.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
计量经济学 第三章 多元线性回归模型.
§3.6 受约束回归 在建立回归模型时,有时根据经济理论需对模型中变量的参数施加一定的约束条件。 1阶齐次性 条件的C-D生产函数
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.3 多元线性回归模型的统计检验 一、拟合优度检验 二、方程的显著性检验(F检验) 三、变量的显著性检验(t检验) 四、参数的置信区间.
计量经济学 第四章 多重共线性.
引子: 国内生产总值增加会减少财政收入吗?
计量经济学 第三章 多元线性回归模型.
第二章 回归模型 法、参数的普通最小二乘估计式及相关性质、对模型的经济意 义检验和统计检验,能应用Eviews软件进行最小二乘估计与统
一元线性回归模型 § 1 回归分析概述 § 2 一元线性回归模型的参数估计 § 3 一元线性回归模型的统计检验
二、Dickey-Fuller检验(DF检验)
第七章:回归分析的其它问题 第一节 虚拟变量 第二节 设定误差 第三节 滞后变量模型介绍 第四节 随机解释变量 第五节 时间序列模型初步.
第2章 一元线性回归 2 .1 一元线性回归模型 2 .2 参数 的估计 2 .3 最小二乘估计的性质 2 .4 回归方程的显著性检验
第2章 一元线性回归分析 §2.1 :回归分析及回归模型 §2.2 :一元线性模型的参数估计 §2.3 :参数估计值的性质及统计推断
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
多元回归分析:估计 y = b0 + b1x1 + b2x bkxk + u 计量经济学导论 刘愿.
第十章 方差分析.
第七章 参数估计 7.3 参数的区间估计.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
自相关.
模型分类问题 Presented by 刘婷婷 苏琬琳.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第六章 自相关.
第六章 多重共线性 一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第五章 异方差.
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第四章 多元线性回归分析.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
第二节 简单线性回归模型的最小二乘估计 用样本去估计总体回归函数,总要使用特定的方法,而任何估 计参数的方法都需要有一定的前提条件——假定条件 一、简单线性回归的基本假定 为什么要作基本假定? ●只有具备一定的假定条件,所作出的估计才具有良好的统计性质。 ●模型中有随机扰动项,估计的参数是随机变量,显然参数估计值的分布与扰动项的分布有关,只有对随机扰动的分布作出假定,才能比较方便地确定所估计参数的分布性质,也才可能进行假设检验和区间估计等统计推断。
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
多元线性回归分析.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
数学模型实验课(二) 最小二乘法与直线拟合.
Presentation transcript:

§4.2 序列相关性 Serial Correlation

§4.2 序列相关性 一、序列相关性概念 二、实际经济问题中的序列相关性 三、序列相关性的后果 四、序列相关性的检验 §4.2 序列相关性 一、序列相关性概念 二、实际经济问题中的序列相关性 三、序列相关性的后果 四、序列相关性的检验 五、具有序列相关性模型的估计 六、案例

如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现了序列相关性。 一、序列相关性概念 对于模型 Yi=0+1X1i+2X2i+…+kXki+i i=1,2, …,n 随机项互不相关的基本假设表现为 Cov(i , j)=0 ij, i,j=1,2, …,n 如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现了序列相关性。

i=i-1+i -1<<1 如果仅存在 E(i i+1)0 i=1,2, …,n 称为一阶列相关,或自相关(autocorrelation) 自相关往往可写成如下形式: i=i-1+i -1<<1 其中:被称为自协方差系数(coefficient of autocovariance)或一阶自相关系数(first-order coefficient of autocorrelation) i是满足以下标准的OLS假定的随机干扰项: 由于序列相关性经常出现在以时间序列为样本的模型中,因此,本节将用下标t代表i。

二、实际经济问题中的序列相关性 1、经济变量固有的惯性 例如,绝对收入假设下居民总消费函数模型: 大多数经济时间数据都有一个明显的特点:惯性,表现在时间序列不同时间的前后关联上。 例如,绝对收入假设下居民总消费函数模型: Ct=0+1Yt+t t=1,2,…,n 由于消费习惯的影响被包含在随机误差项中,则可能出现序列相关性(往往是正相关 )。

2、模型设定的偏误 所谓模型设定偏误(Specification error)是指所设定的模型“不正确”。主要表现在模型中丢掉了重要的解释变量或模型函数形式有偏误。 例如,本来应该估计的模型为 Yt=0+1X1t+ 2X2t + 3X3t + t 但在模型设定中做了下述回归: Yt=0+1X1t+ 1X2t + vt 因此, vt=3X3t + t,如果X3确实影响Y,则出现序列相关。

但建模时设立了如下模型: 又如:如果真实的边际成本回归模型应为: 其中:Y=边际成本,X=产出, Yt= 0+1Xt+vt Yt= 0+1Xt+2Xt2+t 其中:Y=边际成本,X=产出, 但建模时设立了如下模型: Yt= 0+1Xt+vt 因此,由于vt= 2Xt2+t, ,包含了产出的平方对随机项的系统性影响,随机项也呈现序列相关性。

3、数据的“编造” 因此,新生成的数据与原数据间就有了内在的联系,表现出序列相关性。 在实际经济问题中,有些数据是通过已知数据生成的。 因此,新生成的数据与原数据间就有了内在的联系,表现出序列相关性。 例如:季度数据来自月度数据的简单平均,这种平均的计算减弱了每月数据的波动性,从而使随机干扰项出现序列相关。 还有就是两个时间点之间的“内插”技术往往导致随机项的序列相关性。

二、序列相关性的后果 计量经济学模型一旦出现序列相关性,如果仍采用OLS法估计模型参数,会产生下列不良后果: 1、参数估计量非有效 因为,在有效性证明中利用了 E(NN’)=2I 即同方差性和互相独立性条件。 而且,在大样本情况下,参数估计量虽然具有一致性,但仍然不具有渐近有效性。

在变量的显著性检验中,统计量是建立在参数方差正确估计基础之上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。 2、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差正确估计基础之上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。 其他检验也是如此。

3、模型的预测失效 区间预测与参数估计量的方差有关,在方差有偏误的情况下,使得预测估计不准确,预测精度降低。 所以,当模型出现序列相关性时,它的预测功能失效。

三、序列相关性的检验

三、序列相关性的检验 基本思路: 序列相关性检验方法有多种,但基本思路相同: 然后,通过分析这些“近似估计量”之间的相关性,以判断随机误差项是否具有序列相关性。

1、图示法

2、回归检验法 如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 …… 如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 回归检验法的优点是:(1)能够确定序列相关的形式,(2)适用于任何类型序列相关性问题的检验。

3、杜宾-瓦森(Durbin-Watson)检验法 D-W检验是杜宾(J.Durbin)和瓦森(G.S. Watson)于1951年提出的一种检验序列自相关的方法,该方法的假定条件是: (1)解释变量X非随机; (2)随机误差项i为一阶自回归形式: i=i-1+i (3)回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i (4)回归含有截距项

但是,他们成功地导出了临界值的下限dL和上限dU ,且这些上下限只与样本的容量n和解释变量的个数k有关,而与解释变量X的取值无关。 D.W. 统计量: 杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量: 该统计量的分布与出现在给定样本中的X值有复杂的关系,因此其精确的分布很难得到。 但是,他们成功地导出了临界值的下限dL和上限dU ,且这些上下限只与样本的容量n和解释变量的个数k有关,而与解释变量X的取值无关。

D.W检验步骤: (1)计算DW值 (2)给定,由n和k的大小查DW分布表,得临界值dL和dU (3)比较、判断 dL<D.W.<dU 不能确定 dU <D.W.<4-dU 无自相关 4-dU <D.W.<4- dL 不能确定 4-dL <D.W.<4 存在负自相关 不能确定 不能确定 无自相关 正相关 负相关 0 dL dU 2 4-dU 4-dL

当D.W.值在2左右时,模型不存在一阶自相关。 证明: 展开D.W.统计量: (*)

这里, 为一阶自回归模型 i=i-1+i 的参数估计。 如果存在完全一阶正相关,即=1,则 D.W. 0 完全一阶负相关,即= -1, 则 D.W. 4 完全不相关, 即=0,则 D.W.2

4、拉格朗日乘数(Lagrange multiplier)检验 拉格朗日乘数检验克服了DW检验的缺陷,适合于高阶序列相关以及模型中存在滞后被解释变量的情形。 它是由布劳殊(Breusch)与戈弗雷(Godfrey)于1978年提出的,也被称为GB检验。 对于模型 如果怀疑随机扰动项存在p阶序列相关:

GB检验可用来检验如下受约束回归方程 约束条件为: H0: 1=2=…=p =0 约束条件H0为真时,大样本下 其中,n为样本容量,R2为如下辅助回归的可决系数: 给定,查临界值2(p),与LM值比较,做出判断, 实际检验中,可从1阶、2阶、…逐次向更高阶检验。

如果模型被检验证明存在序列相关性,则需要发展新的方法估计模型。 四、序列相关的补救 如果模型被检验证明存在序列相关性,则需要发展新的方法估计模型。 最常用的方法是广义最小二乘法(GLS: Generalized least squares)和广义差分法(Generalized Difference)。

1、广义最小二乘法 对于模型 Y=X+  如果存在序列相关,同时存在异方差,即有 是一对称正定矩阵,存在一可逆矩阵D,使得 =DD’

该模型具有同方差性和随机误差项互相独立性: 变换原模型: D-1Y=D-1X  +D-1 即 Y*=X* + * (*) 该模型具有同方差性和随机误差项互相独立性: (*)式的OLS估计: 这就是原模型的广义最小二乘估计量(GLS estimators),是无偏的、有效的估计量。

如何得到矩阵? 对的形式进行特殊设定后,才可得到其估计值。 如设定随机扰动项为一阶序列相关形式 i=i-1+i 则

2、广义差分法 广义差分法是将原模型变换为满足OLS法的差分模型,再进行OLS估计。 如果原模型 存在 可以将原模型变换为:

注意: 广义差分法就是上述广义最小二乘法,但是却损失了部分样本观测值。 如:一阶序列相关的情况下,广义差分是估计 这相当于 去掉第一行后左乘原模型Y=X+  。即运用了GLS法,但第一次观测值被排除了。

3、随机误差项相关系数的估计 应用广义最小二乘法或广义差分法,必须已知随机误差项的相关系数1, 2, … , L 。 实际上,人们并不知道它们的具体数值,所以必须首先对它们进行估计。 常用的估计方法有: 科克伦-奥科特(Cochrane-Orcutt)迭代法。 杜宾(durbin)两步法

(1)科克伦-奥科特迭代法。 以一元线性模型为例: 首先,采用OLS法估计原模型 Yi=0+1Xi+i i=1i-1+2i-2+Li-L+i

求出i新的“近拟估计值”, 并以之作为样本观测值,再次估计 i=1i-1+2i-2+Li-L+i

类似地,可进行第三次、第四次迭代。 关于迭代的次数,可根据具体的问题来定。 一般是事先给出一个精度,当相邻两次1,2,  ,L的估计值之差小于这一精度时,迭代终止。 实践中,有时只要迭代两次,就可得到较满意的结果。两次迭代过程也被称为科克伦-奥科特两步法。

该方法仍是先估计1,2,,l,再对差分模型进行估计 (2)杜宾(durbin)两步法 该方法仍是先估计1,2,,l,再对差分模型进行估计 第一步,变换差分模型为下列形式 进行OLS估计,得各Yj(j=i-1, i-2, …,i-l)前的系数1,2, , l的估计值

应用软件中的广义差分法 在Eview/TSP软件包下,广义差分采用了科克伦-奥科特(Cochrane-Orcutt)迭代法估计。 在解释变量中引入AR(1)、AR(2)、…,即可得到参数和ρ1、ρ2、…的估计值。 其中AR(m)表示随机误差项的m阶自回归。在估计过程中自动完成了ρ1、ρ2、…的迭代。

注意: 如果能够找到一种方法,求得Ω或各序列相关系数j的估计量,使得GLS能够实现,则称为可行的广义最小二乘法(FGLS, Feasible Generalized Least Squares)。 FGLS估计量,也称为可行的广义最小二乘估计量(feasible general least squares estimators) 可行的广义最小二乘估计量不再是无偏的,但却是一致的,而且在科克伦-奥科特迭代法下,估计量也具有渐近有效性。 前面提出的方法,就是FGLS

4、虚假序列相关问题 由于随机项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误,这种情形可称为虚假序列相关(false autocorrelation) ,应在模型设定中排除。 避免产生虚假序列相关性的措施是在开始时建立一个“一般”的模型,然后逐渐剔除确实不显著的变量。

五、案例:中国商品进口模型 经济理论指出,商品进口主要由进口国的经济发展水平,以及商品进口价格指数与国内价格指数对比因素决定的。 由于无法取得中国商品进口价格指数,我们主要研究中国商品进口与国内生产总值的关系。(下表)。

1. 通过OLS法建立如下中国商品进口方程: (2.32) (20.12) 2. 进行序列相关性检验。

DW检验 拉格朗日乘数检验 dl=1.27, du=1.45 由于 DW=0.628< dl ,故: 存在正自相关。 取=5%,由于n=24,k=2(包含常数项),查表得: dl=1.27, du=1.45 由于 DW=0.628< dl ,故: 存在正自相关。 拉格朗日乘数检验 2阶滞后: (0.23)(-0.50) (6.23) (-3.69) R2=0.6614 于是,LM=220.6614=14.55 取=5%,2分布的临界值20.05(2)=5.991 LM > 20.05(2) 故: 存在正自相关

表明: 存在正自相关;但ět-3的参数不显著,说明不存在3阶序列相关性。 3阶滞后: (0.22) (-0.497) (4.541) (-1.842) (0.087) R2=0.6615 于是,LM=210.6614=13.89 取=5%,2分布的临界值20.05(3)=7.815 LM > 20.05(3) 表明: 存在正自相关;但ět-3的参数不显著,说明不存在3阶序列相关性。

3、运用广义差分法进行自相关的处理 (1)采用杜宾两步法估计 第一步,估计模型 第二步,作差分变换: (1.76) (6.64) (-1.76) (5.88) (-5.19) (5.30) 第二步,作差分变换:

取=5%,DW>du=1.43 (样本容量24-2=22) 表明:已不存在自相关 则M*关于GDP*的OLS估计结果为: (2.76) (16.46) 取=5%,DW>du=1.43 (样本容量24-2=22) 表明:已不存在自相关 于是原模型为: 与OLS估计结果的差别只在截距项:

(2)采用科克伦-奥科特迭代法估计 在Eviews软包下,2阶广义差分的结果为: (3.81) (18.45) (6.11) (-3.61) 取=5% ,DW>du=1.66(样本容量:22) 表明:广义差分模型已不存在序列相关性。 可以验证: 仅采用1阶广义差分,变换后的模型仍存在1阶自相关性; 采用3阶广义差分,变换后的模型不再有自相关性,但AR[3]的系数的t值不显著。