§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.

Slides:



Advertisements
Similar presentations
第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
数值分析 第二章 矩阵分析基础 第一节 线性空间 第二节 赋范线性空间 第三节 内积空间 第四节 矩阵代数基础 第五节 矩阵的三角分解 第六节 矩阵的正交分解 第七节 矩阵的奇异值分解.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
线性代数 第六章 矩阵的对角化 6.3 内积和正交矩阵.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第三章 函数逼近 — 最佳平方逼近.
《高等数学》(理学) 常数项级数的概念 袁安锋
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
常用逻辑用语复习课 李娟.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
探索三角形相似的条件(2).
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
!!! 请记住:矩阵是否等价只须看矩阵的秩是否相同。
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: 第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: (1) n个未知数的齐次线性方程组Ax.
空间向量的数量积运算.
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
线段的有关计算.
2.6 直角三角形(二).
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
第三章 线性空间 Linear Space.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§3 向量组的秩.
§8.3 不变因子 一、行列式因子 二、不变因子.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
平面向量基本定理.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
第五章 相似矩阵及二次型.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
A经有限次初等变换化为B,称A与B等价,记作A→B.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
§2 方阵的特征值与特征向量.
第五节 线性方程组有解判别定理 一、线性方程组的向量表示形式 二、线性方程组有解判别定理 三、一般线性方程组的解法 四、线性方程组的求解步骤.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
用向量法推断 线面位置关系.
3.2 平面向量基本定理.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
第七章 线性空间与线性变换 §1 线性空间定义与性质
1.2.2 充要条件 高二数学 选修 1-1 第一章 常用逻辑用语.
Presentation transcript:

§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和

由维数公式 设   为线性空间V的两个子空间, 有两种情形: 此时 即,   必含非零向量.

此时    不含非零向量,即 情形2)是子空间的和的一种特殊情况   直和

一、直和的定义 注: 设 为线性空间V的两个子空间,若和 中每个向量 的分解式 是唯一的,和 就称为直和,记作 ① 分解式 唯一的,意即 中每个向量 的分解式 是唯一的,和   就称为直和,记作 注: ① 分解式      唯一的,意即 若有 则

② 分解式唯一的不是在任意两个子空间的和中 都成立. 例如,R3的子空间 这里, 在和   中,向量的分解式不唯一,如 所以和   不是直和.

而在和   中,向量 (2,2,2) 的分解式是唯一的, 事实上,对            都只有唯一分解式: 故   是直和. 

二、直和的判定 1、(定理8) 和   是直和的充要条件是零向量 分解式唯一,即若 则必有 2、和   是直和 3、和   是直和

总之,设   为线性空间V的子空间,则下面 四个条件等价: 1)   是直和 2)零向量分解式唯一 3) 4) 4、(定理10) 设U是线性空间V的一个子空间, 则必存在一个子空间W,使 称这样的W为U的一个余子空间.

注意: 余子空间 一般不是唯一的(除非U是平凡子空间). 如,在R3中,设 5、设           分别是线性子空间 的一组基,则 是直和 线性无关.

三、推广  多个子空间的直和 1、定义 都是线性空间V的子空间,若和 中每个向量 的分解式   是唯一的,则和   就称为直和,记作

2、判定 设     都是线性空间V的子空间,则下面 四个条件等价: 1)    是直和 2)零向量分解式唯一,即 3) 4)

例1、每一个n 维线性空间都可以表示成 n 个一维 子空间的直和. 证:设      是 n 维线性空间V的一组基, 则 而 故 得证.

例2. 已知    ,设 证明:1)    是  的子空间. 2)当    时, 证:1) 任取 有 是  的子空间.

下证  是  的子空间. 又对  有 从而有 故  是  的子空间.

2)先证 任取 其中 又 又   是  的子空间, 再证

任取 从而 所以

例3、 和       是直和 证: 则

则零向量还有一个分解式 (*) 在(*)式中,设最后一个不为0的向量是 则(*)式变为 这时, 所以,      是直和.

作业 P271: 19 20