第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand

Slides:



Advertisements
Similar presentations
1 §2.2 离 散 型 随 机 变 量 §2.1 随 机 变 量 的 概 念 §2.3 超几何分布 · 二项分布 · 泊松分布 1. “0-1” 分布 ( 两点分布 ) 3. 二项分布 4. Poisson 分布 2. 超几何分布 n →∞ , N→∞ , (x = 0, 1, 2, , n) (x.
Advertisements

第一章 、随机事件与概率 1.1 、随机事件 1.2 、随机事件的概率 1.3 、随机事件概率的计算 1.4 、伯努利概型.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
2 Chp1 知识概述 一、莆田概况 1 、位置 位于北纬 25° ,东经 119° , 背山面海,北依省会福州市, 南邻泉州市。东南靠濒海,与 台湾省隔海相望。 2 、面积 全市陆地面积约为 3781 平 方千米。海域面积 1.1 万平方 千米。
第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布 3.4 随机变量的独立性
第四章 随机变量的数字特征 随机变量的分布是对随机变量的一种完整的描述,知道随机变量的分布就全都知道随机变量的所有特征。然后随机变量的概率分布往往不容易求得的。 随机变量的这些统计特征通常用数字表示的。这些用来描述随机变量统计性的数字称为随机变量的数字特征。其中最重要的是数学期望(均值)和方差二种。
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
基于R软件的统计模拟 奚 潭 (南京财经大学统计系2006级).
第三章 函数逼近 — 最佳平方逼近.
数学分析 江西财经大学 统计学院 2012级 密码: sxfx2012
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第十八章 含参变量的反常积分 教学目标: 1°使学生掌握含参变量反常积分概念; 2°使学生学会用定义证明含参变量反常积分收敛性。
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第四章 随机变量的数字特征 第一节 数学期望 第二节 方差 第三节 协方差及相关系数 第四节 矩、协方差矩阵.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第2章 Z变换 Z变换的定义与收敛域 Z反变换 系统的稳定性和H(z) 系统函数.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
第八章 欧氏空间 8.1 向量的内积 8.2 正交基 8.3 正交变换 8.4 对称变换和对称矩阵.
第五章:随机变量的收敛性 随机样本:IID样本 , 统计量:对随机样本的概括 收敛性:当样本数量n趋向无穷大时,统计量的变化
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
计算机数学基础 主讲老师: 邓辉文.
EM算法 一种参数估计的方法.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
概率论 ( Probability) 2016年 2019年4月13日星期六.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
Monte Carlo Simulation Methods (蒙特卡罗模拟方法)
2.3 线性乘同余方法 (Linear Congruential Method)
第三章:期望 上节课内容 本节课内容 随机变量及其分布 随机变量变换的分布 常见分布族 多元随机向量的分布:联合分布、边缘分布、条件分布
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第四章 随机变量的数字特征 我们知道,随机变量的分布列或概率密度,全面地描述了随机变量的统计规律.但在许多实际问题中,这样的全面描述并不使人感到方便. 已知一只母鸡的年产蛋量是一个随机变量,如果要比较两个品种的母鸡的年产蛋量,通常只要比较这两个品种的母鸡的年产蛋量的平均值就可以了.平均值大就意味着这个品种的母鸡的产蛋量高.如果不去比较它们的平均值,而只看它们的分布列,虽然全面,却使人不得要领,既难以掌握,又难以迅速地作出判断.
第5章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理.
第一部分:概率 对应教材Chp1-5 课堂上讲述会较快,将知识点串起来,建议大家通读教材 主要内容: 随机变量及其分布
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三章 随机变量的数字特征 (一)基本内容 一、一维随机变量的数学期望 定义1:设X是一离散型随机变量,其分布列为:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
1.非线性规划模型 2.非线性规划的Matlab形式
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第 四 章 大 数 定 理 与 中 心 极 限 定 理.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
难点:连续变量函数分布与二维连续变量分布
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§4.1数学期望.
第7章 特征理论 偏微分方程组 弱间断解与弱间断面.
第五章 大数定律和中心极限定理 关键词: 马尔可夫不等式 切比雪夫不等式 大数定律 中心极限定理.
Cfc Zeilberger 算法 陈焕林 陈永川 付梅 臧经涛 2009年7月29日.
Presentation transcript:

第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand 直接方法:概率积分变换 通过对均匀分布的采样实现对任意分布的采样 间接方法: 接受/拒绝算法(重要性采样) MCMC方法

概率积分变换 X有连续CDF ,定义随机变量 ,则Y为[0,1]上的均匀分布,即 对随机数产生特别有用(Chp2第15题)

1.0 0.5

概率积分变换 X有连续严格递增的CDF ,定义随机变量Y为 ,则Y为[0,1]上的均匀分布,即 令 则

对任意分布采样 通过对均匀分布采样,实现对任意分布的采样 从 随机产生一个样本y 令 ,其中 为X的CDF 计算 结果 为对 的采样

对任意分布采样

对任意分布采样 例:对指数分布采样

变形 若X为离散型随机变量,其取值为 则可以通过以下方式产生随机样本 定义 例:为了从 产生一个随机样本,从 产生一个随机样本y,则 若 ,令 定义 例:为了从 产生一个随机样本,从 产生一个随机样本y,则

但采样问题还没有解决 因为 所以:有时需要间接方法 通常不能确定 通常不能对 求逆 Monte Carlo 通常不能对 求逆 所以:有时需要间接方法 Monte Carlo Matlab中有常见分布的随机数产生函数

第一部分总结 随机变量及其分布 多元随机向量及其分布 层次模型 CDF、pdf/pmf 随机变量的变换的分布 联合分布、边缘分布、条件分布 贝叶斯公式 条件独立 多元随机向量的变换的分布 层次模型

第一部分总结 期望 方差 利用定义计算期望、期望的直观含义 概率积分变换及其应用 条件期望 利用定义计算方差、方差的直观含义 条件方差 层次模型中期望的计算 方差 利用定义计算方差、方差的直观含义 条件方差 协方差/相关系数

第一部分总结 不等式 收敛性 Chebyshev不等式 Hoeffding不等式(对二项分布) Cauchy-Schwarz不等式 Jensen不等式 收敛性 依概率收敛 大数定律及其应用 依分布收敛 中心极限定理及其应用