第二节 中心极限定理 一、问题的引入 二、基本定理 三、典型例题 四、小结.

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量. 再例如, 既容易计算又是较好的近似值 问题 : 这个线性函数 ( 改变量的主要部分 ) 是否 所有函数的改变量都有 ? 它是什么 ? 如何求 ?
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
§5.2 中心极限定理 定理3(同分布中心极限定理)设随机变量X1, X2, …, Xn, …相互独立,服从相同分布,且有有限的数学期望和方差,即: E(Xk) =,D(Xk) =2,k = 1, 2, … 则随机变量 的分布函数Fn(x)满足: 对任意的x,有.
本章主要内容 §5.1 大数定律 §5.2 中心极限定理 独立同分布的中心极限定理 二项分布的正态近似
概率论与数理统计 2.2 离散型随机变量及其分布.
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
第2章 随机变量及其分布 2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布
第四章 概率、正态分布、常用统计分布.
第三章 函数逼近 — 最佳平方逼近.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
定积分习题课.
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
本讲义可在网址 或 ftp://math.shekou.com 下载
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第6章 统计量及其抽样分布 统计量 关于分布的几个概念 由正态分布导出的几个重要分布 样本均值的分布与中心极限定理 样本比例的抽样分布
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
第五章:随机变量的收敛性 随机样本:IID样本 , 统计量:对随机样本的概括 收敛性:当样本数量n趋向无穷大时,统计量的变化
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
概 率 统 计 主讲教师 叶宏 山东大学数学院.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
概率论 ( Probability) 2016年 2019年4月13日星期六.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第5章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§5.2 中心极限定理 人们已经知道,在自然界和生产实践中遇到的大量随机 变量都服从或近似服从正态分布,正因如此,正态分布占有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4.3 中心极限定理 一、问题的引入 二、基本定理 三、典型例题 四、小结.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第 四 章 大 数 定 理 与 中 心 极 限 定 理.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
定义 设连续型随机变量 概率密度为 分布函数是 特别地, 其概率密度为 一、正态分布的相关内容:.
难点:连续变量函数分布与二维连续变量分布
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§4.1数学期望.
第五章 大数定律和中心极限定理 关键词: 马尔可夫不等式 切比雪夫不等式 大数定律 中心极限定理.
Presentation transcript:

第二节 中心极限定理 一、问题的引入 二、基本定理 三、典型例题 四、小结

一、问题的引入 实例: 考察射击命中点与靶心距离的偏差. 这种偏差是大量微小的偶然因素造成的微小误差的总和, 这些因素包括: 瞄准误差、测量误差、子弹制造过程方面 (如外形、重量等) 的误差以及射击时武器的振动、气象因素(如风速、风向、能见度、温度等) 的作用, 所有这些不同因素所引起的微小误差是相互独立的, 并且它们中每一个对总和产生的影响不大. 某个随机变量是由大量相互独立且均匀小的随机变量相加而成的, 研究其概率分布情况. 问题:

二、基本定理 定理四(独立同分布的中心极限定理)

定理四表明:

定理五(李雅普诺夫定理) 李雅普诺夫

则随机变量之和的标准化变量

定理五表明: (如实例中射击偏差服从正态分布) 下面介绍的定理六是定理四的特殊情况.

定理六(德莫佛-拉普拉斯定理) 德莫佛 拉普拉斯 证明 根据第四章第二节例题可知

根据定理四得 定理六表明: 正态分布是二项分布的极限分布, 当n充分大时, 可以利用该定理来计算二项分布的概率.

下面的图形表明:正态分布是二项分布的逼近.

三、典型例题 例1 解 由定理四, 随机变量 Z 近似服从正态分布 N (0,1) ,

其中

例2 一船舶在某海区航行, 已知每遭受一次海浪的冲击, 纵摇角大于 3º 的概率为1/3, 若船舶遭受了90 000次波浪冲击, 问其中有29 500~30 500次纵摇角大于 3º 的概率是多少? 将船舶每遭受一次海浪的冲击看作一次试验, 解 并假设各次试验是独立的, 在90 000次波浪冲击中纵摇角大于 3º 的次数为 X, 则 X 是一个随机变量,

分布律为 所求概率为 直接计算很麻烦,利用德莫佛-拉普拉斯定理

某保险公司的老年人寿保险有1万人参加,每人每年交200元. 若老人在该年内死亡,公司付给家属1万元. 设老年人死亡率为0 某保险公司的老年人寿保险有1万人参加,每人每年交200元. 若老人在该年内死亡,公司付给家属1万元. 设老年人死亡率为0.017,试求保险公司在一年内的这项保险中亏本的概率. 例3 解 设 X 为一年中投保老人的死亡数, 由德莫佛-拉普拉斯定理知,

保险公司亏本的概率

例4 对于一个学生而言, 来参加家长会的家长人数是一个随机变量. 设一个学生无家长、1名家长、 2名家长来参加会议的概率分别为0.05,0.8,0.15. 若学校共有400名学生, 设各学生参加会议的家长数相互独立, 且服从同一分布. (1) 求参加会议的家长数 X 超过450的概率; (2) 求有1名家长来参加会议的学生数不多于340的概率. 解

根据独立同分布的中心极限定理,

由德莫佛-拉普拉斯定理知,

例5 证

根据独立同分布的中心极限定理,

四、小结 独立同分布的中心极限定理 李雅普诺夫定理 三个中心极限定理 德莫佛-拉普拉斯定理 中心极限定理表明, 在相当一般的条件下, 当独立随机变量的个数增加时, 其和的分布趋于正态分布.