Experiments in Mathematics

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
计算机数学基础(下) --数值分析 教师:孙继荣 电话: 028 -
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
仪 器 分 析 实 验仪 器 分 析 实 验 主讲人:刘江涛 重庆师范大学 化学学院.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
数学模型实验课(三) 插值与三维图形.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
Matlab 选讲 二 上海交通大学数学系 刘小军
实验3 插值与数值积分.
第三单元 第4课 Matlab数据插值 1.一维插值 2.二维插值 3.对非网格数据进行插值.
工程实践中必不可少的数学方法(数据处理)
第六章 计算方法  非线性方程求解 多项式插值与曲线拟合 数值微分与数值积分 求常微分方程数值解命令.
一.多项式构造及其运算 1、多项式构造 poly2str(p,’x’) 将表示多项式系数的行向量p转换为变量是x的多项式形式。
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
基准物质(p382,表1) 1. 组成与化学式相符(H2C2O4·2H2O、NaCl ); 2. 纯度>99.9%; 3. 稳定(Na2CO3、CaCO3、Na2C2O4等) 4. 参与反应时没有副反应.
1.函数 2.程序 3.图形 目的:掌握Matlab作平面曲线图的方法与技巧
第二章 函数 插值 — 分段低次插值.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
线性规 Linear Programming
第四章 一次函数 4. 一次函数的应用(第1课时).
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第4章 Excel电子表格制作软件 4.4 函数(一).
北师大版五年级数学下册 分数乘法(一).
溶质质量分数的计算 嘉兴市秀洲现代实验学校 沈丹英.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
利用DSC进行比热容的测定 比 热 容 测 量 案 例 2010.02 TA No.036 热分析・粘弹性测量定 ・何为比热容
建模常见问题MATLAB求解  .
第二章 函 数 插 值 — 三次样条插值.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
正弦函数的性质与图像.
我们能够了解数学在现实生活中的用途非常广泛
第 二节 化学计量在实验中的应用.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
第三章 函数 逼近 — 曲线拟合的最小二乘法.
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
本底对汞原子第一激发能测量的影响 钱振宇
线性规划 Linear Programming
三角 三角 三角 函数 余弦函数的图象和性质.
数学模型实验课(二) 最小二乘法与直线拟合.
§4.5 最大公因式的矩阵求法( Ⅱ ).
Matlab插值与拟合 插值 拟合.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
9.3多项式乘多项式.
Presentation transcript:

Experiments in Mathematics 数学实验 Experiments in Mathematics 插 值 与 拟 合 重庆邮电学院基础数学教学部

实验目的 1、掌握用Matlab计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。. 2、掌握用Matlab作线性最小二乘的方法. 3、通过实例学习如何使用插值方法与拟合方法解决实际问题,注意二者的区别和联系 实验内容 1、插 值. 2、拟 合. 3、 数学建模实例 实验软件 MATLAB

插 值 (一) 插值问题的提法 (二)解决插值问题的基本方法

数学建模实例 1、船在该海域会搁浅吗 2、薄膜渗透率的测定

插值问题的提法: 求解的基本思路:

拉格朗日多项式插值

分段线性插值

三次样条插值

曲线拟合问题的提法: y O + x

线性最小二乘法是解决曲线拟合最常用的方法, 基本思路是令:

一、系数的确定 记

二、常用的曲线函数:

船在该海域会搁浅吗?

水道水深测量数据(单位:英尺) x 129.0 140.0 103.5 88.0 185.5 195.0 105.5 Y 7.5 141.5 23.0 147.0 22.5 137.5 85.5 Z 4 8 6 X 157.5 107.5 77.0 81.0 162.0 117.5 -6.5 -81.0 3.0 56.5 -66.5 84.0 -33.5 9

一、问题分析: 假设:该海域海底是平滑的。由于测量点是散乱分布的,先在平面上作出测量点的分布图,在利用二维插值方法补充一些点的水深,然后作出海底曲面图和等高线图,并求出水深小于5的海域范围。 二、问题求解: 1、作出测量点 的分布图:

2、作出海底地貌图

3、危险区域海底地貌图

4、危险区域平面图

薄膜渗透率的测定

一、假设 1、薄膜两侧的溶液始终是均匀的,即在任何时刻膜两侧的每一处溶液的浓度都是相等的 2、当两溶液的浓度不一致时,物质的分子穿透薄膜总是从高浓度溶液向低浓度溶液扩散 3、通过单位面积膜分子扩散的速度与膜两侧溶液的浓度差成正比 4、薄膜是双向同性的即物质从膜的任何一侧向另一侧渗透的性能是相同的

二、符号说明

三、建模 考察时段[t,t+Δt]薄膜两侧容器中该物质质量的变化。以容器A为例,在该时段物质质量的增加量为: 另一方面从B侧渗透至A侧的该物质质量为: 由质量守恒定律有: 由此得:

又整个容器 中含有该物质的质量应该不变,所以有下式: 即 所以 得 在利用初始条件

的最小值点(K,a, b),其中:

四、模型求解 (秒) 100 200 300 400 500 4.54 4.99 5.35 5.65 5.90 600 700 800 900 1000 6.10 6.26 6.39 6.50 6.59

此时极小化的函数为: 用Matlab软件进行计算