1.2直角三角形(1) 想一想 如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理在西方文献中又称为毕达哥拉斯定理(pythagoras theorem). a c b 勾 弦 股.

Slides:



Advertisements
Similar presentations
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
Advertisements

平行四边形的判定 新海实验中学苍梧校区 王欣.
勾股定理 总复习.
四种命题 2 垂直.
1.1.1命题及其关系.
四种命题的相互关系.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
热烈欢迎专家光临指导!!.
命题 高中数学选修1-1 第一章 常用逻辑用语 主讲:刘小苗.
余角、补角.
勾股定理的逆定理.
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
问:图中∠α与∠β的度数之间有怎样的关系?
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
同学们好! 肖溪镇竹山小学校 张齐敏.
1.2 直角三角形(2).
角平分线的性质 本节内容 本课内容 1.4.
平行四边形的判别.
 做一做   阅读思考 .
八年级 上册 11.2 与三角形有关的角 (第2课时).
第十一章 三角形 三角形的内角(第2课时) 湖北省咸宁市咸安区教育局教研室 王格林.
勾股定理的逆定理 X.
第二十七章 相 似 相似三角形的判定 第4课时 两角分别相等的两个三角形相似.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
知识回顾: 1. 平行四边形具有哪些性质? 平行四边形的性质: 1、边:平行四边形对边平行且相等。 2、角:平行四边形对角相等,邻角互补。
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
28.1 锐角三角函数(2) ——余弦、正切.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
几何课件 等腰三角形的判定.
(人教版)八年级数学上册 等腰三角形的判定 磐石市实验中学
第3课时 两边成比例且夹角相等的两个三角形相似
线段的有关计算.
九年级 下册 相似三角形的判定.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
3.2 勾股定理的逆定理.
2.6探索勾股定理 (二).
第四章 四边形性质探索 第五节 梯形(第二课时)
三角形的中位线.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
10.3平行线的性质 合肥38中学 甄元对.
4.2 证明⑶.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
八年级 上册 第十三章 轴对称 等腰三角形的判定 湖北省通山县教育局教研室 袁观六.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
2.6 直角三角形(1).
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
平行线的判定 1.
岱山实验学校欢迎你 岱山实验学校 虞晓君.
(人教版) 数学八年级上册 12.3 等腰三角形(1) 磐石市实验中学.
13.3.2等边三角形.
13.3 等腰三角形 (第3课时).
空间平面与平面的 位置关系.
3.4圆周角(一).
平行四边形的性质 鄢陵县彭店一中 赵二歌.
八年级数学(上册)• 北师版 探索勾股定理.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
第 五 章 相交线与平行线复习 制作:LXL.
锐角三角函数(1) ——正 弦.
18.2 勾股定理的逆定理(2).
H a S = a h.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

1.2直角三角形(1) 想一想 如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理在西方文献中又称为毕达哥拉斯定理(pythagoras theorem). a c b 勾 弦 股

这些证法你还能记得多少?你最喜欢哪种证法? 勾股定理的证明 方法一: 拼图计算 方法二:割补法 方法三:赵爽的弦图 方法四:总统证法 方法一: 拼图计算 方法二:割补法 方法三:赵爽的弦图 方法四:总统证法 方法五:青朱出入图 方法六:折纸法 方法七:拼图计算 这些证法你还能记得多少?你最喜欢哪种证法?

伽菲尔德的证法在数学史上被传为佳话,后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法. 勾股定理的证明 这个证明方法出自一位总统, 1881年,伽菲尔德(J.A. Garfield )就任美国第二十任总统,在 1876 , 利用了梯形面积公式. 图中三个三角形面积的和是 2×ab/2+c/2;梯形面积为(a+b)(a+b)/2; 比较可得:c2 = a2+b2 . a b c 伽菲尔德的证法在数学史上被传为佳话,后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.

已知:如图(1),在△ABC中,AC2+BC2=AB2. 求证:△ABC是直角三角形. 勾股定理逆定理 如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形. 已知:如图(1),在△ABC中,AC2+BC2=AB2. 求证:△ABC是直角三角形. a c b A B C (1)

逆定理的证明 已知:如图(1),在△ABC中,AC2+BC2=AB2. 求证:△ABC是直角三角形. a c b A B C (1) 证明:作Rt △A′B′C′使∠C′ =900,A′C′=AC,B′C′=BC(如图),则 A′C′2+B′C′2=A′B′2(勾股定理). ∵AC2+BC2=AB2(已知), A′C′=AC,B′C′=BC(作图), a c b B′ A′ C′ (2) ∴ AB2=A′B′2(等式性质). ∴ AB=A′B′(等式性质). ∴ △ABC≌ △A′B′C′(SSS). ∴ ∠A=∠A′= 900(全等三角形的对应边). ∴ △ABC是直角三角形(直角三角形意义).

勾股定理的逆定理 勾股定理逆定理 如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形. 在△ABC中 (1) 在△ABC中 ∵AC2+BC2=AB2(已知), ∴△ABC是直角三角形(如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形). ′ 这是判定直角三角形的根据之一.

命题与逆命题 直角三角形两直角边的平方和等于斜边的平方. 如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形. 观察上面两个命题,它们的条件与结论之间有怎样的关系?与同伴交流. 再观察下面两组命题: 如如果两个角是对顶角,那么它们相等, 如如果两个角相等,那么它们是对顶角如; 如果小明患了肺炎,那么他一定会发烧, 如果小明发烧,那么他一定患了肺炎; 上面每组中两个命题的条件和结论之间也有类似的关系吗?与同伴进行交流.

想一想:一个命题是真命题,它逆命题是真命题还是假命题? 命题与逆命题 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 你能写出命题“如果两个有理数相等, 那么它们的平方相等”的逆命题吗? 它们都是真命题吗? 想一想:一个命题是真命题,它逆命题是真命题还是假命题?

想一想: 定理与逆定理 一个命题是真命题,它逆命题却不一定是真命题. 如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理. 我们已经学习了一些互逆的定理,如: 勾股定理及其逆定理, 两直线平行,内错角相等;内错角相等,两直线平行. 你还能举出一些例子吗? 想一想: 互逆命题与互逆定理有何关系?

如图(单位:英尺),在一个长方体的房间里,一只蜘蛛在一面墙的正中间离天花板1英尺的A处,苍蝇则在对面墙的正中间离地板1英尺的B处. 动手试一试 如图(单位:英尺),在一个长方体的房间里,一只蜘蛛在一面墙的正中间离天花板1英尺的A处,苍蝇则在对面墙的正中间离地板1英尺的B处. 试问:蜘蛛为了捕获苍蝇,需要爬行的最短距离是多少? ● A B 30 12

如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形. 本课小结 勾股定理: 如果直角三角形两直角边分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.勾股定理在西方文献中又称为毕达哥拉斯定理(pythagoras theorem). 勾股定理的逆定理: 如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形.

在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 本课小结 命题与逆命题 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 定理与逆定理 如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.

∴△ABC是直角三角形(如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形). 动手试一试 B C A 1.如图,在△ABC中,已知AB=13cm, BC=10cm,BC边上的中线AD=12cm. 求证:AB=AC. 证明:∵BD=CD,BC=10cm(已知), ∴ BD=5cm(等式性质). D ∴ 在△ABD中, ∵ AD2+BD2=122+52=144+25=169, AB2=132=169, ∴AD2+BD2=AB2. ∴△ABC是直角三角形(如果三角形两边的平方和等于第三边平方, 那么这个三角形是直角三角形). 在Rt△ADC中 ∴AC2=DC2+AD2=122+52=144+25=169, ∴AC2=AB2. ∴AB=AC(等式性质).

解:∵BC⊥AC,∠A=300,AB=10m(已知), 动手试一试 2.房梁的一部分如图所示,其中BC⊥AC,∠A=300,AB=10m,CB1⊥AB, B1C1⊥AC,垂足为B1,C1,那么BC的长是多少?B1C1呢? 解:∵BC⊥AC,∠A=300,AB=10m(已知), ∴ BC=AB/2=10÷2=5(在直角三角形中, 如果有一个锐角等于300,那么它所对的直角边等于斜边的一半), 又∵CB1⊥AB,∠BCB1=900-600=300(直角三角形两锐角互余), ∴CB1=BC/2=5÷2=2.5(在直角三角形中, 如果有一个锐角等于300,那么它所对的直角边等于斜边的一半). ∴AB1=AB-BB1=10-2.5=7.5(等式性质).

动手试一试 ∴B1C1=AB1/2=7.5÷2=3.75(在直角三角形中, 如果有一个锐角等于300,那么它所对的直角边等于斜边的一半). B C A B1 C1 D1 A1 D 3.如图,正四棱柱的底面边长为5cm,侧棱长为8cm,一只蚂蚁欲从正四棱柱的底面上的点A沿棱柱侧面到点C1处吃食物,那么它需要爬行的最短路径是多少?

老师提示:对于空间图形需要动手操作,将其转化为平面图形来解决. B A B1 D1 A1 D C1 C 动手试一试 解:如下图,将四棱柱的侧面展开,连结AC1, ∵AC=10cm,CC1=8cm(已知), 答:蚂蚁需要爬行的最短路径是 cm. 老师提示:对于空间图形需要动手操作,将其转化为平面图形来解决.

课后 作业 课后习题