第4章 模糊控制 4.1 模糊控制的基本原理.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
§3.4 空间直线的方程.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
第4章 模糊控制 4.1 模糊控制的基本原理.
造纸机模糊控制系统的设计.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第三章 模糊控制的理论基础 第一节 概述 一、模糊控制的提出.
不确定度的传递与合成 间接测量结果不确定度的评估
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
全国计算机等级考试 二级基础知识 第二章 程序设计基础.
走进编程 程序的顺序结构(二).
元素替换法 ——行列式按行(列)展开(推论)
第一单元 初识C程序与C程序开发平台搭建 ---观其大略
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
实验六 积分器、微分器.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
C语言程序设计 主讲教师:陆幼利.
简单介绍 用C++实现简单的模板数据结构 ArrayList(数组, 类似std::vector)
专题二: 利用向量解决 平行与垂直问题.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
概 率 统 计 主讲教师 叶宏 山东大学数学院.
Three stability circuits analysis with TINA-TI
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
模糊控制的基本原理和方法 ● 模糊逻辑控制器的基本结构 ● 模糊控制系统的设计 ● PID 控制器模糊增益调节
RFB:外部积分反馈 (external reset feedback)
模糊系统与神经网络 模 糊 倒 车 控 制 系 统 ── 拖 斗 拖 车 作 者: 池 峰 2004年12月01日.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第4章 Excel电子表格制作软件 4.4 函数(一).
iSIGHT 基本培训 使用 Excel的栅栏问题
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
张建明 浙江大学智能系统与控制研究所 2016年05月19日
第八章 总线技术 8.1 概述 8.2 局部总线 8.3 系统总线 8.4 通信总线.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第六节 用频率特性法分析系统性能举例 一、单闭环有静差调速系统的性能分析 二、单闭环无静差调速系统的性能分析
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
魏新宇 MATLAB/Simulink 与控制系统仿真 魏新宇
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
滤波减速器的体积优化 仵凡 Advanced Design Group.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
基于列存储的RDF数据管理 朱敏
C++语言程序设计 C++语言程序设计 第一章 C++语言概述 第十一组 C++语言程序设计.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
本底对汞原子第一激发能测量的影响 钱振宇
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
三角 三角 三角 函数 余弦函数的图象和性质.
入侵检测技术 大连理工大学软件学院 毕玲.
工业机器人入门使用教程 ESTUN机器人 主讲人:李老师
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
Presentation transcript:

第4章 模糊控制 4.1 模糊控制的基本原理

4.1.1、模糊控制原理 模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。该方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。

图 模糊控制原理框图

模糊控制器(Fuzzy Controller—FC)也称为模糊逻辑控制器(Fuzzy Logic Controller—FLC),由于所采用的模糊控制规则是由模糊理论中模糊条件语句来描述的,因此模糊控制器是一种语言型控制器,故也称为模糊语言控制器(Fuzzy Language Controller—FLC)。

4.1.2 模糊控制器的构成 模糊控制器的组成框图如图所示。 图 模糊控制器的组成框图

1.       模糊化接口(Fuzzy interface) (1)={负大,负小,零,正小,正大}={NB, NS, ZO, PS, PB} (2)={负大,负中,负小,零,正小,正中,正大}={NB, NM, NS, ZO, PS, PM, PB} (3)={大,负中,负小,零负,零正,正小,正中,正大}={NB, NM, NS, NZ, PZ, PS, PM, PB}

用三角型隶属度函数表示如图所示。 图 模糊子集和模糊化等级

2. 知识库(Knowledge Base—KB) 知识库由数据库和规则库两部分构成。 (1)数据库(Data Base—DB) 数据库所存放的是所有输入、输出变量的全部模糊子集的隶属度矢量值(即经过论域等级离散化以后对应值的集合),若论域为连续域则为隶属度函数。在规则推理的模糊关系方程求解过程中,向推理机提供数据。

(2)规则库(Rule Base—RB) 模糊控制器的规则司基于专家知识或手动操作人员长期积累的经验,它是按人的直觉推理的一种语言表示形式。模糊规则通常有一系列的关系词连接而成,如if-then、else、also、end、or等,关系词必须经过“翻译”才能将模糊规则数值化。最常用的关系词为if-then、also,对于多变量模糊控制系统,还有and等。例如,某模糊控制系统输入变量为(误差)和(误差变化),它们对应的语言变量为E和EC,可给出一组模糊规则:

R1: IF E is NB and EC is NB then U is PB R2: IF E is NB and EC is NS then U is PM 通常把if…部分称为“前提部,而then…部分称为“结论部”,其基本结构可归纳为If A and B then C,其中A为论域U上的一个模糊子集,B是论域V上的一个模糊子集。根据人工控制经验,可离线组织其控制决策表R, R是笛卡儿乘积集上的一个模糊子集,则某一时刻其控制量由下式给出:

式中 × 模糊直积运算; ° 模糊合成运算。 规则库是用来存放全部模糊控制规则的,在推理时为“推理机”提供控制规则。规则条数和模糊变量的模糊子集划分有关,划分越细,规则条数越多,但并不代表规则库的准确度越高,规则库的“准确性”还与专家知识的准确度有关。

3.推理与解模糊接口(Inference and Defuzzy-interface) 推理是模糊控制器中,根据输入模糊量,由模糊控制规则完成模糊推理来求解模糊关系方程,并获得模糊控制量的功能部分。在模糊控制中,考虑到推理时间,通常采用运算较简单的推理方法。最基本的有Zadeh近似推理,它包含有正向推理和逆向推理两类。正向推理常被用于模糊控制中,而逆向推理一般用于知识工程学领域的专家系统中。

推理结果的获得,表示模糊控制的规则推理功能已经完成。但是,至此所获得的结果仍是一个模糊矢量,不能直接用来作为控制量,还必须作一次转换,求得清晰的控制量输出,即为解模糊。通常把输出端具有转换功能作用的部分称为解模糊接口。 综上所述,模糊控制器实际上就是依靠微机(或单片机)来构成的。它的绝大部分功能都是由计算机程序来完成的。随着专用模糊芯片的研究和开发,也可以由硬件逐步取代各组成单元的软件功能。

4.1.3、模糊控制系统的工作原理 以水位的模糊控制为例,如图4-4所示。设有一个水箱,通过调节阀可向内注水和向外抽水。设计一个模糊控制器,通过调节阀门将水位稳定在固定点附近。按照日常的操作经验,可以得到基本的控制规则: “若水位高于O点,则向外排水,差值越大,排水越快”; “若水位低于O点,则向内注水,差值越大,注水越快”。 根据上述经验,按下列步骤设计模糊控制器:

图 4-4 水箱液位控制

将偏差e分为五级:负大(NB),负小(NS),零(O),正小(PS),正大(PB)。 1 确定观测量和控制量 定义理想液位O点的水位为h0,实际测得的水位高度为h,选择液位差 将当前水位对于O点的偏差e作为观测量, 2 输入量和输出量的模糊化 将偏差e分为五级:负大(NB),负小(NS),零(O),正小(PS),正大(PB)。

根据偏差e的变化范围分为七个等级:-3,-2,-1,0,+1,+2,+3。得到水位变化模糊表4-1。 表4-1 水位变化划分表

控制量u为调节阀门开度的变化。将其分为五级:负大(NB),负小(NS),零(O),正小(PS),正大(PB)。并根据u的变化范围分为九个等级:-4,-3,-2,-1,0,+1,+2,+3,+4。得到控制量模糊划分表4-2。

表4-2 控制量变化划分表

3 模糊规则的描述 根据日常的经验,设计以下模糊规则: (1)“若e负大,则u正大” (2)“若e负小,则u正小” (3)“若e为0,则u为0” (4)“若e正小,则u负小” (5)“若e正大,则u负大”

上述规则采用“IF A THEN B”形式来描述: (1) if e=NB then u=NB (2) if e=NS then u=NS (3) if e=0 then u=0 (4) if e=PS then u=PS (5) if e=PB then u=PB 根据上述经验规则,可得模糊控制表4-3。

表4-3 模糊控制规则表 4 求模糊关系 模糊控制规则是一个多条语句,它可以表示为U×V上的模糊子集,即模糊关系R: 其中规则内的模糊集运算取交集,规则间的模糊集运算取并集。

由以上五个模糊矩阵求并集(即隶属函数最大值),得:

5 模糊决策 模糊控制器的输出为误差向量和模糊关系的合成: 当误差e为NB时, 控制器输出为

6 控制量的反模糊化 由模糊决策可知,当误差为负大时,实际液位远高于理想液位,e=NB,控制器的输出为一模糊向量,可表示为: 如果按照“隶属度最大原则”进行反模糊化,则选择控制量为 ,即阀门的开度应关大一些,减少进水量。

仿真:按上述步骤,设计水箱模糊控制的Matlab仿真程序。通过该程序,可实现模糊控制的动态仿真。模糊控制响应表见表4-4所示。取偏差e=-3,运行该程序,得u =-3.1481。 表4-4 模糊控制响应表

四、模糊控制器结构 在确定性控制系统中,根据输入变量和输出变量的个数,可分为单变量控制系统和多变量控制系统。在模糊控制系统中也可类似地划分为单变量模糊控制和多变量模糊控制。 1 单变量模糊控制器 在单变量模糊控制器(Single Variable Fuzzy Controller—SVFC)中,将其输入变量的个数定义为模糊控制的维数。

(1)一维模糊控制器 如图所示,一维模糊控制器的输入变量往往选择为受控量和输入给定的偏差量E。由于仅仅采用偏差值,很难反映过程的动态特性品质,因此,所能获得的系统动态性能是不能令人满意的。这种一维模糊控制器往往被用于一阶被控对象。

(2)二维模糊控制器 如图所示,二维模糊控制器的两个输入变量基本上都选用受控变量和输入给定的偏差E和偏差变化EC,由于它们能够较严格地反映受控过程中输出变量的动态特性,因此,在控制效果上要比一维控制器好得多,也是目前采用较广泛的一类模糊控制器。

(3)三维模糊控制器 如图所示,三维模糊控制器的三个输入变量分别为系统偏差量E、偏差变化量EC和偏差变化的变化率ECC。由于这些模糊控制器结构较复杂,推理运算时间长,因此除非对动态特性的要求特别高的场合,一般较少选用三维模糊控制器。

模糊控制系统所选用的模糊控制器维数越高,系统的控制精度也就越高。但是维数选择太高,模糊控制规律就过于复杂,这是人们在设计模糊控制系统时,多数采用二维控制器的原因。

2 多变量模糊控制器 一个多变量模糊控制器(Multiple Variable Fuzzy Controller)系统所采用的模糊控制器,具有多变量结构,称之为多变量模糊控制器。如图4-6所示。 要直接设计一个多变量模糊控制器是相当困难的,可利用模糊控制器本身的解耦特点,通过模糊关系方程求解,在控制器结构上实现解耦,即将一个多输入-多输出(MIMO)的模糊控制器,分解成若干个多输入-单输出(MISO)的模糊控制器,这样可采用单变量模糊控制器方法设计。

图4-6 多变量模糊控制器

第2节 模糊控制系统分类 1 按信号的时变特性分类 (1)恒值模糊控制系统 系统的指令信号为恒定值,通过模糊控制器消除外界对系统的扰动作用,使系统的输出跟踪输入的恒定值。也称为“自镇定模糊控制系统”,如温度模糊控制系统。 (2)随动模糊控制系统 系统的指令信号为时间函数,要求系统的输出高精度、快速地跟踪系统输入。也称为“模糊控制跟踪系统”或“模糊控制伺服系统”。

2 按模糊控制的线性特性分类 对开环模糊控制系统S,设输入变量为u,输出变量为v。对任意输入偏差Δu和输出偏差Δv,满足 , 。 定义线性度δ,用于衡量模糊控制系统的线性化程度: 其中 , , 为线性化因子,m为模糊子集V的个数。

设k0为一经验值,则定义模糊系统的线性特性为:(1)当 时,S为线性模糊系统;(2)当 时,S为非线性模糊系统。 3 按静态误差是否存分类 (1)有差模糊控制系统 将偏差的大小及其偏差变化率作为系统的输入为有差模糊控制系统。 (2)无差模糊控制系统 引入积分作用,使系统的静差降至最小。

4 按系统输入变量的多少分类 控制输入个数为1的系统为单变量模糊控制系统,控制输入个数>1的系统为多变量模糊控制系统。

第3节 模糊控制器的设计 3.1、模糊控制器的设计步骤 第3节 模糊控制器的设计 3.1、模糊控制器的设计步骤 模糊控制器最简单的实现方法是将一系列模糊控制规则离线转化为一个查询表(又称为控制表)。这种模糊控制其结构简单,使用方便,是最基本的一种形式。本节以单变量二维模糊控制器为例,介绍这种形式模糊控制器的设计步骤,其设计思想是设计其他模糊控制器的基础。

1 模糊控制器的结构 单变量二维模糊控制器是最常见的结构形式。 2 定义输入输出模糊集 对误差E、误差变化EC及控制量u的模糊集及其论域定义如下: E、EC和u的模糊集均为: E、EC的论域均为:{-3,-2,-1,0,1,2,3} u的论域为:{-4.5,-3,-1.5,0,1,3,4.5}

3 定义输入输出隶属函数 模糊变量误差E、误差变化EC及控制量u的模糊集和论域确定后,需对模糊语言变量确定隶属函数,确定论域内元素对模糊语言变量的隶属度。 4 建立模糊控制规则 根据人的经验,根据系统输出的误差及误差的变化趋势来设计模糊控制规则。模糊控制规则语句构成了描述众多被控过程的模糊模型。

5 建立模糊控制表 模糊控制规则可采用模糊规则表4-5来描述,共49条模糊规则,各个模糊语句之间是或的关系,由第一条语句所确定的控制规则可以计算出u1。同理,可以由其余各条语句分别求出控制量u2,…,u49,则控制量为模糊集合U可表示为

表4-5 模糊规则表

6 模糊推理 模糊推理是模糊控制的核心,它利用某种模糊推理算法和模糊规则进行推理,得出最终的控制量。 7 反模糊化 通过模糊推理得到的结果是一个模糊集合。但在实际模糊控制中,必须要有一个确定值才能控制或驱动执行机构。将模糊推理结果转化为精确值的过程称为反模糊化。常用的反模糊化有三种:

(1)最大隶属度法 选取推理结果模糊集合中隶属度最大的元素作为输出值,即 , 。 如果在输出论域V中,其最大隶属度对应的输出值多于一个,则取所有具有最大隶属度输出的平均值,即: N为具有相同最大隶属度输出的总数。

最大隶属度法不考虑输出隶属度函数的形状,只考虑最大隶属度处的输出值。因此,难免会丢失许多信息。它的突出优点是计算简单。在一些控制要求不高的场合,可采用最大隶属度法。 (2) 重心法 为了获得准确的控制量,就要求模糊方法能够很好的表达输出隶属度函数的计算结果。重心法是取隶属度函数曲线与横坐标围成面积的重心为模糊推理的最终输出值,即

对于具有m个输出量化级数的离散域情况 与最大隶属度法相比较,重心法具有更平滑的输出推理控制。即使对应于输入信号的微小变化,输出也会发生变化。

(3)加权平均法 工业控制中广泛使用的反模糊方法为加权平均法,输出值由下式决定 其中系数 的选择根据实际情况而定。不同的系数决定系统具有不同的响应特性。当系数 取隶属度 时,就转化为重心法。

反模糊化方法的选择与隶属度函数形状的选择、推理方法的选择相关 Matlab提供五种解模糊化方法:(1)centroid:面积重心法;(2)bisector:面积等分法;(3)mom:最大隶属度平均法;(4)som最大隶属度取小法;(5)lom:大隶属度取大法; 在Matlab中,可通过setfis()设置解模糊化方法,通过defuzz()执行反模糊化运算。

xx=defuzz(x,mf,’centroid’); 在模糊控制中,重心法可通过下例语句来设定: 例如,重心法通过下例程序来实现: x=-10:1:10; mf=trapmf(x,[-10,-8,-4,7]); xx=defuzz(x,mf,’centroid’); 在模糊控制中,重心法可通过下例语句来设定: a1=setfis(a,'DefuzzMethod','centroid') 其中a为模糊规则库。

3.2 模糊控制器的Matlab仿真 根据上述步骤,建立二输入单输出模糊控制系统,该系统包括两个部分,即模糊控制器的设计和位置跟踪。 1.模糊控制器的设计 模糊规则表如表4-5所示,控制规则为49条。误差、误差变化率和控制输入的范围均为。通过运行showrule(a),可得到用于描述模糊系统的49条模糊规则。控制器的响应表如表4-6所示。

表4-5 模糊规则表

表4-6 模糊响应表 e ec -3 -2 -1 1 2 3 4

模糊控制器的设计仿真程序见chap4_2.m。在仿真时,模糊推理系统可由命令plotfis(a2)得到。系统的输入输出隶属度函数如图4-7至4-9所示。 图4-7 偏差隶属度函数

图4-8 偏差变化率隶属度函数

图4-9 控制器输出隶属度函数

2.模糊控制位置跟踪 被控对象为 首先运行模糊控制器程序chap4_2.m,并将模糊控制系统保存在a2之中。然后运行模糊控制的Simulink仿真程序,位置指令取正弦信号,仿真结果如图4-10所示。 模糊控制位置跟踪的Simulink仿真程序见chap4_3.mdl。

图4-10 正弦位置跟踪 图4-10 正弦位置跟踪

第4节 模糊控制器设计实例-洗衣机模糊控制 以模糊洗衣机的设计为例,其控制是一个开环的决策过程,模糊控制按以下步骤进行。 (1)模糊控制器的结构 选用单变量二维模糊控制器。控制器的输入为衣物的污泥和油脂,输出为洗涤时间。 (2)定义输入输出模糊集 将污泥分为三个模糊集:SD(污泥少),MD(污泥中),LD(污泥多),取值范围为[0,100]。

(3)定义隶属函数 选用如下隶属函数: 采用三角形隶属函数实现污泥的模糊化,如图4-11所示。

图4-11 污泥隶属函数

采用Matlab仿真,可实现污泥隶属函数的设计,仿真程序为chap4_4.m

将油脂分为三个模糊集:NG(无油脂),MG(油脂中),LG(油脂多),取值范围为[0,100]。选用如下隶属函数:

采用三角形隶属函数实现污泥的模糊化,如下图4-12所示。仿真程序同污泥隶属函数。 图4-12 油脂隶属函数

将洗涤时间分为三个模糊集:VS(很短),S(短),M(中等),L(长),VL(很长),取值范围为[0,60]。选用如下隶属函数: 采用三角形隶属函数实现洗涤时间的模糊化,如图4-13所示。

图4-13 洗涤时间隶属函数

采用Matlab仿真,可实现洗涤时间隶属函数的设计,仿真程序为chap4_5。

(4)建立模糊控制规则 根据人的操作经验设计模糊规则,模糊规则设计的标准为:“污泥越多,油脂越多,洗涤时间越长”;“污泥适中,油脂适中,洗涤时间适中”;“污泥越少,油脂越少,洗涤时间越短”。 (5)建立模糊控制表 根据模糊规则的设计标准,建立模糊规则表4-7。

表4-7 模糊洗衣机的洗涤规则

第*条规则为:“IF 衣物污泥少 且 没有油脂 THEN 洗涤时间很短”。 (6)模糊推理 分以下几步进行: ① 规则匹配。假定当前传感器测得的信息为: , , 分别带入所属的隶属函数中求隶属度:

通过上述四种隶属度,可得到四条相匹配的模糊规则,如表4-8所示: 表4-8 模糊推理结果

② 规则触发。由上表可知,被触发的规则有4条: Rule 1:IF y is MD and x is MG THEN z is M Rule 2:IF y is MD and x is LG THEN z is L Rule 3:IF y is LD and x is MG THEN z is L Rule 4:IF y is LD and x is LG THEN z is VL ③ 规则前提推理。在同一条规则内,前提之间通过“与”的关系得到规则结论,前提之间通过取小运算,得到每一条规则总前提的可信度: 规则1前提的可信度为:min(4/5,3/5)=3/5 规则2前提的可信度为:min(4/5,2/5)=2/5 规则3前提的可信度为:min(1/5,3/5)=1/5 规则4前提的可信度为:min(1/5,2/5)=1/5

由此得到洗衣机规则前提可信度表,即规则强度表4-9。 表4-9 规则前提可信度

④ 将上述两个表进行“与”运算,得到每条规则总的输出,如表4-10所示 表4-10 规则总的可信度

⑤ 模糊系统总的输出 模糊系统总的输出为各条规则推理结果的并,即 ⑥ 反模糊化 模糊系统总的输出实际上是三个规则推理结果的并集,需要进行反模糊化,才能得到精确的推理结果。下面以最大平均法为例,进行反模糊化。

将 带入洗涤时间隶属函数中的 ,得到规则前提隶属度 与规则结论隶属度 的交点: , 得: , 。 采用最大平均法,可得精确输出

仿真实例:采用MATLAB中模糊控制工具箱中的模糊命令设计洗衣机模糊控制系统,采用本节的隶属函数,按上述步骤设计模糊系统。取x=60,y=70,反模糊化采用重心法,模糊推理结果为33.6853。利用模糊命令ruleview可实现模糊控制的动态仿真。动态仿真模糊系统如图4-16所示。 仿真程序:chap4_6.m

图4-16 动态仿真模糊系统

第5节 模糊自适应整定PID控制 5.1 模糊自适应整定PID控制原理 见WORD文档。

第6节 Sugeno模糊模型 6.1 Sugeno模糊模型 传统的模糊系统为Mamdani模糊模型,输出为模糊量。 Sugeno模糊模型输出隶属函数为constant或linear,其函数形式为: 它与Mamdani模型的区别在于: (1)输出变量为常量或线性函数; (2)输出为精确量。

6.2 Sugeno模糊模型的设计 设输入 , ,将它们模糊化为两个模糊量:小,大。输出为输入的线性函数,模糊规则为:

仿真设计: 根据上述规则设计一个二输入、单输出的Sugeno模型,可观察到输入输出隶属函数曲线。 仿真结果如图所示。 仿真程序:chap4_8.m仿真

图 Sugeno模糊推理系统的输入隶属函数曲线

图 Sugeno模糊推理系统的输入/输出曲线

第7节 基于Sugeno模糊模型的倒立摆模糊控制   7.1 倒立摆模型的局部线性化 当倒立摆的摆角和摆速很小时,其模型可进行线性化,从而可实现基于Sugeno模糊模型的倒立摆模糊控制。 倒立摆的动力学方程为:

其中 表示摆与垂直线的夹角, , 表示摆的摆动角速度, , 为重力加速度, 为倒立摆的质量, 为摆长, , 为小车质量, 当摆角 和摆速 很小时 , 。在平面上对倒立摆模型进行局部线性化,倒立摆的动力学方程可近似写为:

7.2 仿真实例 取倒立摆参数 , , 。令 ,则倒立摆的动力学方程可表示为如下状态方程: 其中 , 。 则可得到Sugeno型模糊模型规则:

选择期望的闭环极点 ,采用 的反馈控制,利用极点配置函数place(A,B,P),可以得到系统的反馈增益矩阵F: 。 根据倒立摆的模糊建模过程,可以设计Sugeno型模糊控制器,其Sugeno型模糊控制规则为: 利用上述两种模糊规则,可设计基于Sugeno模糊模型的倒立摆模糊控制系统。

设倒立摆的摆角范围为 度,摆角角速度范围为 度/秒,摆角角加速度范围为 度/秒2。采用三角形隶属函数对摆角和摆角角速度进行模糊化。摆角初始状态为 ,运行仿真程序chap4_9f.m和chap4_9.m,倒立摆的摆角、角速度、控制输出信号及模糊输入隶属函数曲线的仿真结果如图所示。

第8节 模糊控制的应用 模糊控制在家电中的 应用 (1)模糊电视机 (2) 模糊空调 (3) 模糊微波炉 (4) 模糊洗衣机 第8节 模糊控制的应用 模糊控制在家电中的 应用 (1)模糊电视机 (2) 模糊空调 (3) 模糊微波炉 (4) 模糊洗衣机 (5) 模糊电动剃刀 模糊控制在过程控制中的 应用 (1)工业炉 (2)石化 (3)煤矿 (4)食品加工行业

第9节 模糊控制发展概况 9.1 模糊控制发展的几个转折点 9.2 模糊控制的发展方向 9.3 模糊控制面临的主要任务 第9节 模糊控制发展概况 9.1 模糊控制发展的几个转折点 9.2 模糊控制的发展方向 Fuzzy-PID复合控制 自适应模糊控制 专家模糊控制 神经模糊控制 多变量模糊控制 9.3 模糊控制面临的主要任务