统计学习理论和SVM(支持向量机).

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
1/14 练习题 Ex1. 计算球体 V 允许其相对误差限为 1%, 问测量球 半径 R 的相对误差限最大为多少 ? 试分析高度误差对面积计算的影响。 Ex2. 将地球模型取为半径为 R (km) 的球体,赤道上 方高度为 d (km) 的地球同步卫星发射的信号对地球 的覆盖面积计算公式为 Ex3 在计算机上对调和级数逐项求和.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
高等数学 A (一) 总复习(2).
专利技术交底书的撰写方法 ——公司知识产权讲座
Svm基本知识与原理 张立新.
肖 冰 深圳市达晨创业投资有限公司 副总裁 深圳市达晨财信创业投资管理公司 总裁
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
第五课 让挫折丰富我们的人生 挫折面前也从容.
统计学习 Statistical Learning
第八章 统计学习理论与SVM (Chapter8 SLT & SVM )
食品营养成分的检验. 食品营养成分的检验 科学探究的一般过程: 形成假设 设计方案 收集数据 表达交流 处理信息 得出结论 探究:馒头和蛋糕中是否含有淀粉和脂肪 假设:馒头和蛋糕中含有淀粉和脂肪.
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
Introduction To Mean Shift
支持向量机 Support Vector Machines
第五讲 支持向量机网络.
Support Vector Machine 支持向量机
SOA – Experiment 3: Web Services Composition Challenge
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Introduction to AI and ML
Online job scheduling in Distributed Machine Learning Clusters
What have we learned?.
第十章 方差分析.
核函数方法及其在过程控制中的应用研究 Studies on the kernel-based methods
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
抽样和抽样分布 基本计算 Sampling & Sampling distribution
chapter 5 突触动力学Ⅱ—— 有监督学习
顺序表的删除.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
模型分类问题 Presented by 刘婷婷 苏琬琳.
线性规 Linear Programming
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
WPT MRC. WPT MRC 由题目引出的几个问题 1.做MRC-WPT的多了,与其他文章的区别是什么? 2.Charging Control的手段是什么? 3.Power Reigon是什么东西?
裙子的结构设计与变化 ----廓形变化.
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
数据集的抽取式摘要 程龚, 徐丹云.
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
1.非线性规划模型 2.非线性规划的Matlab形式
第七、八次实验要求.
基于最大margin的决策树归纳 李 宁.
建模常见问题MATLAB求解  .
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
GIS基本功能 数据存储 与管理 数据采集 数据处理 与编辑 空间查询 空间查询 GIS能做什么? 与分析 叠加分析 缓冲区分析 网络分析
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
滤波减速器的体积优化 仵凡 Advanced Design Group.
基于列存储的RDF数据管理 朱敏
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
数据挖掘导论 福建医科大学 郑伟成.
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
99 教育部專案補助計畫案明細 大類 分項 教育部補助 學校配合款 工作項目 計畫主 持人 執行期限 文號 備註 設備費 業務費 管理學院
Presentation transcript:

统计学习理论和SVM(支持向量机)

主要内容 统计学习理论的核心内容 支持向量机 (1)标准的最优分类面 (2)广义最优分类面 (3)变换到高维空间的支持向量机 感受

统计学习理论的核心内容

统计学习理论是小样本统计估计和预测学习的最佳理论。 假设输出变量Y与输入变量X之间存在某种对应的依赖关系,即一未知概率分布P(X,Y),P(X,Y)反映了某种知识。学习问题可以概括为:根据l个独立同分布( independently drawn and identically distributed )的观测样本train set,

学习到一个假设H=f(x, w) 作为预测函数,其中w是广义参数.它对P(X,Y)的期望风险R(w)是(即统计学习的实际风险):

而对train set上产生的风险Remp(w)被称为经验风险(学习的训练误差): 首先Remp(w)和R(w)都是w的函数,传统概率论中的定理只说明了(在一定条件下)当样本趋于无穷多时Remp(w)将在概率意义上趋近于R(w),却没有保证使Remp(w)最小的点也能够使R(w) 最小(同步最小)。

根据统计学习理论中关于函数集的推广性的界的结论,对于两类分类问题中的指示函数集f(x, w)的所有函数(当然也包括使经验风险员小的函数),经验风险Remp(w)和实际风险R(w)之间至少以不下于1-η(0≤η≤1)的概率存在这样的关系:

h是函数H=f(x, w)的VC维, l是样本数.

一般的学习方法(如神经网络)是基于 Remp(w) 最小,满足对已有训练数据的最佳拟和,在理论上可以通过增加算法(如神经网络)的规模使得Remp(w) 不断降低以至为0。 但是,这样使得算法(神经网络)的复杂度增加, VC维h增加,从而φ(h/l)增大,导致实际风险R(w)增加,这就是学习算法的过度拟和(Overfitting).

Support Vector Machines 支持向量机 Support Vector Machines

支持向量机比较好地实现了有序风险最小化思想(SRM)

如上图的训练样本,在线性可分的情况下,存在多个超平面(Hyperplane) (如 : H1,H2… 其中W.X是内积( dot product ),b是标量。 。

Optimal Hyperplane (最优超平面)是指两类的分类空隙最大,即每类距离超平面最近的样本到超平面的距离之和最大。距离这个最优超平面最近的样本被称为支持向量(Support Vector)。

Margin = …..(1) H1平面: H2平面: …..(2)

求解最优超平面就相当于,在(2)的约束条件下,求(1)的最大值 Minimum: Subject to:

广义最优分类面 在线性不可分的情况下,就是某些训练样本不能满足式(2)的条件,因此可以在条件中增加一个松弛项ζ,约束条件变成 :

此时的目标函数是求下式的最小值: 这个二次优化,同样可以应用Lagrange方法求解

变换到高维空间的支持向量机 采用如下的内积函数:

判别函数成为:

感受 理论基础扎实 应用领域很广 地名识别 鲁棒性强 …………

Thank! 2003-4-18