第二节 n维向量空间 一、 维向量的概念 二、 维向量的表示方法 三、 向量空间 四、 小结.

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
平面向量.
精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
高等数学II 课程网页: 答疑时间:(周一10:00-12:00三教三楼答疑室)
第七章 空间解析几何与向量代数 用代数的方法研究几何问题称为解析几何 平面解析几何 一元微积分 空间解析几何 多元微积分 本章的主要内容 :
§1. 预备知识:向量的内积 ★向量的内积的概念 ★向量的长度 ★向量的正交性 ★向量空间的正交规范基的概念 ★向量组的正交规范化
第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积;
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
第四章 向量组的线性相关性 §1 向量组及其线性组合 §2 向量组的线性相关性 §3 向量组的秩 §4 线性方程组的解的结构.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
线性代数 第六章 矩阵的对角化 6.3 内积和正交矩阵.
向量空间与线性变换 在数学大厦中的重要地位
3.4 空间直线的方程.
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
空间直角坐标系 这一章,我们为学习多元函数微积分学作准备,介绍空间解析几何和向量代数。这是两部分相互关联的内容。用代数的方法研究空间图形就是空间解析几何,它是平面解析几何的推广。向量代数则是研究空间解析几何的有力工具。这部分内容在自然科学和工程技术领域中有着十分广泛的应用,同时也是一种很重要的数学工具。
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
第五章 二次型 §5.1 二次型的矩阵表示 §5.2 标准形 §5.3 唯一性 §5.4 正定二次型 章小结与习题.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
Computer Graphics 计算机图形学基础 张 赐 Mail: CSDN博客地址:
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
第四章 向量组的线性相关性.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
工业机器人技术基础及应用 主讲人:顾老师
第一章 函数与极限.
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
相似三角形 石家庄市第十中学 刘静会 电话:
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
复习.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.5空间向量运算的 坐标表示.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
微课作品介绍.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
第五章 相似矩阵及二次型.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
高中数学必修 平面向量的基本定理.
在发明中学习 线性代数概念引入 之四: 矩阵运算 李尚志 中国科学技术大学.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
§5 向量空间.
3.2 平面向量基本定理.
制作者:王翠艳 李晓荣 o.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
复数复习 北京石油化工学院 蓝波.
Presentation transcript:

第二节 n维向量空间 一、 维向量的概念 二、 维向量的表示方法 三、 向量空间 四、 小结

一、 维向量的概念 定义1 分量全为实数的向量称为实向量, 分量全为复数的向量称为复向量.

例如 n维实向量 n维复向量 第1个分量 第2个分量 第n个分量

二、 维向量的表示方法 维向量写成一行,称为行向量,也就是行 矩阵,通常用 等表示,如: 维向量写成一列,称为列向量,也就是列 二、 维向量的表示方法    维向量写成一行,称为行向量,也就是行 矩阵,通常用      等表示,如:    维向量写成一列,称为列向量,也就是列 矩阵,通常用    等表示,如:

注意   1.行向量和列向量总被看作是两个不同的 向量;   2.行向量和列向量都按照矩阵的运算法则 进行运算;   3.当没有明确说明是行向量还是列向量时, 都当作列向量.

三、向量空间 向 量 解析几何 线性代数 坐标系 既有大小又有方向的量 有次序的实数组成的数组 几何形象: 可随意 平行移动的有向线段 向  量 解析几何 线性代数 既有大小又有方向的量 坐标系 有次序的实数组成的数组 几何形象: 可随意 平行移动的有向线段 代数形象: 向量的 坐 标 表 示 式

空 间 解析几何 线性代数 坐标系 点空间:点的集合 向量空间:向量的集合 几何形象: 空间 直线、曲线、空间 平面或曲面 空  间 解析几何 线性代数 点空间:点的集合 坐标系 向量空间:向量的集合 几何形象: 空间 直线、曲线、空间 平面或曲面 代数形象: 向量空 间 中 的 平 面 一 一 对 应

时, 维向量没有直观的几何形象. 叫做 维向量空间. 叫做 维向量空间  中的 维超平面.

维向量的实际意义   确定飞机的状态,需 要以下6个参数: 机身的仰角 机翼的转角 机身的水平转角 飞机重心在空间的位置参数P(x,y,z) 所以,确定飞机的状态,需用6维向量

课堂讨论   在日常工作、学习和生活中,有许多问题都 需要用向量来进行描述,请同学们举例说明.

四、小结 1. 维向量的概念,实向量、复向量; 2.向量的表示方法:行向量与列向量; 3. 向量空间: 1. 维向量的概念,实向量、复向量; 2.向量的表示方法:行向量与列向量; 3. 向量空间:   解析几何与线性代数中向量的联系与区别、 向量空间的概念; 4. 向量在生产实践与科学研究中的广泛应用.

思考题   若一个本科学生大学阶段共修36门课程,成绩描述了学生的学业水平,把他的学业水平用一个向量来表示,这个向量是几维的?请大家再多举几例,说明向量的实际应用.

思考题解答         如果我们还需要考察其它指标, 比如平均成绩、总学分等,维数还将增加. 答 36维的. 结束