2016年广东省数学学业考试大纲解读 中山市教育教学研究室 周 曙.

Slides:



Advertisements
Similar presentations
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
Advertisements

平行四边形的判定 新海实验中学苍梧校区 王欣.
10.2 立方根.
四种命题 2 垂直.
1.1.2四种命题 1.1.3四种命题间的相互关系.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
义务教育课程标准实验教科书 九年级数学上册 24.3 正多边形和圆(第2课时) 正多边形的画法.
余角、补角.
点与圆的位置关系 云衢中学 孟战军.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
探索三角形相似的条件(2).
第一章 证明(二) 第三节 线段的垂直平分线(一) 河南郑州第八中学 刘正峰
1.5 三角形全等的判定(4).
第一学期课件 相似三角形性质 阳江学校 毛素云.
平行四边形的判别.
19.3 梯形(第1课时) 等腰梯形.
 做一做   阅读思考 .
12.3 角的平分线的性质 (第2课时).
本节内容 平行线的性质 4.3.
知识回顾: 1. 平行四边形具有哪些性质? 平行四边形的性质: 1、边:平行四边形对边平行且相等。 2、角:平行四边形对角相等,邻角互补。
1.1特殊的平行四边形 1.1菱形.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
几何课件 等腰三角形的判定.
6.4不等式的解法举例(1) 2019年4月17日星期三.
实数与向量的积.
正方形 ——计成保.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
D B A C 菱形的判定 苏州学府中学 金鑫.
等腰三角形复习.
3.4 圆心角(1).
10.3平行线的性质 合肥38中学 甄元对.
平行线的性质 1.
3.3 垂径定理 第2课时 垂径定理的逆定理.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
正 方 形.
2.6 直角三角形(1).
平行线的判定 1.
山东教育出版社•数学•六年级(下) 作三角形.
你还能举出更多例子吗?.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
九年级数学(上) 第一章 特殊平行四边形 2.正方形的性质与判定—判定.
抛物线的几何性质.
(人教版) 数学八年级上册 12.3 等腰三角形(1) 磐石市实验中学.
18.2 特殊的平行四边形 矩形(1).
解三角形 赵伟.
13.3 等腰三角形 (第3课时).
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
直线和圆的位置关系 ·.
空间平面与平面的 位置关系.
一元二次不等式解法(1).
1.5 三角形全等的判定(3)
3.4圆周角(一).
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
4.3 相似多边形.
6.3正方形. 6.3正方形 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。 1. 正方形的定义 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
24.4弧长和扇形面积 圆锥的侧面积和全面积.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
矩形 有一个角是直角的平行四边形 灵宝市川口一中南肖丽.
位似.
生活中的几何体.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
第三章 图形的平移与旋转.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

2016年广东省数学学业考试大纲解读 中山市教育教学研究室 周 曙

考试性质 初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”)是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一.

考试要求 (一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围. (二)试题主要考查以下几个方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等.

考试要求 (三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查. (四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分.

考试内容 考试内容 数与代数 空间与图形 统计与概率 数与式 方程与不等式 函数 图形的性质 图形的变化 图形与坐标 抽样与数据分析 事件的概率

(数与代数)1.有理数 (1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。 (2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)。 (3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。 (4)理解有理数的运算律,能运用运算律简化运算。 (5)能运用有理数的运算解决简单的问题。

(数与代数) 2.实数 (1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。 (2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。 (3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。 (4)能用有理数估计一个无理数的大致范围。 (5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。 (6)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。增加:简单的分母有理化。

典型题型

(数与代数) 3.代数式 (1)借助现实情境了解代数式,进一步理解用字母表示数的意义。 (2)能分析简单问题中的数量关系,并用代数式表示。 (3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

(数与代数) 4.整式与分式 (1)了解整数指数幂的意义和基本性质;会用科学记数法表示数(包括在计算器上表示)。 (2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。 (3)能推导乘法公式:(a+b)( a-b) = a 2- b 2;(a±b)2 = a 2±2ab + b 2,了解公式的几何背景,并能利用公式进行简单计算。 (4)能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。 (5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。

典型题型

1.方程与方程组 (1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。 (2)经历估计方程解的过程。 (3)掌握等式的基本性质。 (4)能解一元一次方程、可化为一元一次方程的分式方程。 (5)掌握代入消元法和加减消元法,能解二元一次方程组。

1.方程与方程组 (6)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。 (7)能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。 (8)能根据具体问题的实际意义,检验方程的解是否合理。 下列选学内容没有列入考纲:了解一元二次方程的根与系数的关系,简单的三元一次方程组。

典型题型 解一元二次方程 解二元一次方程组 解分式方程 一元二次方程应用题 分式方程应用题

典型题型 2012年第16题 2015年第22题

典型题型 2008年第16题

2.不等式与不等式组 (1)结合具体问题,了解不等式的意义,探索不等式的基本性质。 (2)能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。 (3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。

1.函数 (1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。 (2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。 (3)能结合图像对简单实际问题中的函数关系进行分析。 (4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。 (5)能用适当的函数表示法刻画简单实际问题中变量之间的关系。 (6)结合对函数关系的分析,能对变量的变化情况进行初步讨论。

2.一次函数 (1)结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式(参见例58)。 (2)会利用待定系数法确定一次函数的表达式。 (3)能画出一次函数的图像,根据一次函数的图像和表达式 y = kx + b (k≠0)探索并理解k>0和k<0时,图像的变化情况。 (4)理解正比例函数。 (5)体会一次函数与二元一次方程的关系。 (6)能用一次函数解决简单实际问题。

3.反比例函数 (1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。 (2)能画出反比例函数的图像,根据图像和表达式 y = (k≠0)探索并理解k>0和k<0时,图像的变化情况。 (3)能用反比例函数解决简单实际问题。

4.二次函数 未列入考纲:二次函数最值(但常考) (1)通过对实际问题的分析,体会二次函数的意义。 (2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。 (3)会用配方法将数字系数的二次函数的表达式化为 的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。 (4)会利用二次函数的图像求一元二次方程的近似解。 未列入考纲:二次函数最值(但常考)

典型题型 一次函数(分段函数、两个一次函数) 一次函数与反比例函数 一次函数与二次函数(不常见) 函数与方程之间的关系 函数与不等式之间的关系

1.点、线、面、角 (1)通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等。 (2)会比较线段的大小,理解线段的和、差,以及线段中点的意义。 (3)掌握基本事实:两点确定一条直线。 (4)掌握基本事实:两点之间线段最短。 (5)理解两点间距离的意义,能度量两点间的距离。 (6)理解角的概念,能比较角的大小。 (7)认识度、分、秒,会对度、分、秒进行简单的换算,并计算角的和、差。

2.相交线与平行线 (1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。 (2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。 (3)理解点到直线的距离的意义,能度量点到直线的距离。 (4)掌握基本事实:过一点有且只有一条直线与这条直线垂直。 (5)识别同位角、内错角、同旁内角。

2.相交线与平行线 (6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。 (7)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。 (8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。 (9)能用三角尺和直尺过已知直线外一点画这条直线的平行线。 (10)探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。 (11)了解平行于同一条直线的两条直线平行。

3.三角形 (1)理解三角形及其内角、外角、中线、高线、角平分线等概念,会按照边长的关系和角的大小对三角形进行分类,了解三角形的稳定性。 (2)探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。证明三角形的任意两边之和大于第三边。 (3)理解全等三角形的概念,能识别全等三角形中的对应边、对应角。 (4)掌握基本事实:两边及其夹角分别相等的两个三角形全等。 (5)掌握基本事实:两角及其夹边分别相等的两个三角形全等。 (6)掌握基本事实:三边分别相等的两个三角形全等。 (7)证明定理:两角及其中一组等角的对边分别相等的两个三角形全等。 (8)探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。

3.三角形 (9)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。 (10)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。 (11)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。掌握有两个角互余的三角形是直角三角形。 (12)探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。 (13)探索并掌握判定直角三角形全等的“斜边、直角边”定理。 (14)了解三角形重心的概念。

4.四边形 (1)了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式。 (2)理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。 (3)探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。 (4)了解两条平行线之间距离的意义,能度量两条平行线之间的距离。 (5)探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形具有矩形和菱形的一切性质。 (6)探索并证明三角形的中位线定理。

5.圆 下列内容没进入大纲:垂径定理,切线长定理,圆锥的侧面积,了解正多边形的概念及正多边形与圆的关系。 (1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。 (2)探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补。 (3)知道三角形的内心和外心。 (4)了解直线和圆的位置关系,掌握切线的概念。探索切线与过切点的半径的关系。会用三角尺过圆上一点画圆的切线。 (5)会计算圆的弧长、扇形的面积。 下列内容没进入大纲:垂径定理,切线长定理,圆锥的侧面积,了解正多边形的概念及正多边形与圆的关系。

6.尺规作图 (1)能用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线。 (2)会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形。 (3)会利用基本作图完成:过不在同一直线上的三点作圆;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形。 (4)在尺规作图中,了解作图的道理,保留作图的痕迹,不要求写出作法。

7.定义、命题、定理 (1)通过具体实例,了解定义、命题、定理、推论的意义。 (2)结合具体事例,会区分命题的条件和结论,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。 (3)知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,学会综合法证明的格式。 (4)了解反例的作用,知道利用反例可以判断一个命题是错误的。 (5)通过实例体会反证法的含义。

典型题型 直规作图+简单计算或证明 四边形中的计算与证明(全等或相似) 圆与四边形综合(第24题)

1.图形的轴对称 (1)通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分。 (2)能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴的对称图形。 (3)了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质。 (4)认识和欣赏自然界和现实生活中的轴对称图形。

2.图形的旋转 (1)通过具体实例认识平面图形关于旋转中心的旋转。探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。 (2)了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。 (3)探索线段、平行四边形、正多边形、圆的中心对称性质。 (4)认识和欣赏自然界和现实生活中的中心对称图形。

4.图形的相似 (1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。 (2)通过具体实例认识图形的相似。了解对应角分别相等、对应边分别成比例的多边形叫做相似多边形。相似多边形对应边的比称为相似比。 (3)掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例。 (4)探索并了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。 *了解相似三角形判定定理的证明。 (5)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。

4.图形的相似 (6)了解图形的位似,知道利用位似可以将一个图形放大或缩小。 (7)会利用图形的相似解决一些简单的实际问题。 (8)利用相似的直角三角形,探索并认识锐角三角函数(sinA,cosA,tanA),知道30°,45°,60°角的三角函数值。 (9)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。 (10)能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。  

5.图形的投影 (1)通过丰富的实例,了解中心投影和平行投影的概念。 (2)会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。 (3)了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作实物模型。 (4)通过实例,了解上述视图与展开图在现实生活中的应用。

(三)图形与坐标 1.坐标与图形位置 (1)结合丰富的实例进一步体会用有序数对可以表示物体的位置。 (2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标。 (3)在实际问题中,能建立适当的直角坐标系,描述物体的位置。 (4)会写出简单图形(多边形,矩形)的顶点坐标,体会可以用坐标刻画一个简单图形。

(三)图形与坐标 2.坐标与图形运动 (1)在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。 (2)在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。 (3)在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。 (4)在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一个边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。

(一)抽样与数据分析 1. 经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。 2. 体会抽样的必要性,通过案例了解简单随机抽样。 3. 会制作扇形统计图,能用条形统计图、折线统计图、扇形统计图直观、有效地描述数据。 4. 理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。 5. 体会刻画数据离中程度的意义,会计算简单数据的方差。 6. 通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息。 7. 体会样本与总体关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。 8. 能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。 9. 通过表格、折线图、趋势图等,感受随机现象的变化趋势。

(二)事件的概率 1. 能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。 2. 知道通过大量地重复试验,可以用频率来估计概率。

典型题型 统计图表, 平均数、中位数、众数 列表法、树状图求概率

压轴题——动态几何与函数

压轴题——动态几何与函数

压轴题——动态几何与函数

压轴题——抛物线上的几何计算与证明 2012年第22题

2017/3/18 压轴题——抛物线上的几何计算与证明 2011年22题

压轴题——抛物线上的几何计算与证明 2005年22题

面积问题与面积方法 4 2015年   2014年

面积问题与面积方法 2012年第10题

面积问题与面积方法 2011年第10题

压轴题中的面积

规律探究题 2005年

规律探究题 2007年

规律探究题 2009年

阅读理解题 2010年 2011年

规律探究题 2011年

规律探究题 2011年 2012年

阅读理解题 2009年21题