第2讲 孟德尔的豌豆杂交实验(二).

Slides:



Advertisements
Similar presentations
专题复习 --- 走进名著 亲近经典 读完《鲁滨孙漂流记》这本精彩的小说 后,一个高大的形象时时浮现在我的眼 前,他就是勇敢的探险家、航海家鲁滨 孙。他凭着顽强的毅力,永不放弃的精 神,实现了自己航海的梦想。 我仿佛看到轮船甲板上站着这样的一 个人:他放弃了富裕而又舒适的生活, 厌恶那庸庸碌碌的人生,从而开始了一.
Advertisements

高三生物复习 遗传规律题分类及其解 题技巧. 主要内容 1. 基本概念题 2. 性状遗传方式的判断题 3. 基因型的推导题 4. 有关种类、概率、比例的计算题 5. 综合题.
第一节 分离定律 选用豌豆作为杂交实验材料的原因 1. 豌豆是自花授粉、闭花授粉的植物, 自然 状态下是纯种 2. 豌豆花较大, 便于人工去雄和授粉 3. 豌豆成熟后子粒留在豆荚中, 便于观察计 数 4. 豌豆具有多个稳定而易于区分的性状 自花授粉 : 同一朵花内完成传粉的过程. 闭花授粉 :
遗传的基本规律( 1 ) 周闽湘. 回顾 1 :孟德尔遗传定律适用范围 必须同时符合下列三个条件 : 1. 真核生物 ( 原核细胞和病毒不适 用 ) 2. 有性生殖 ( 无性生殖不适用 ) 3. 核遗传 ( 细胞质遗传不适用 )
第一章第二节 自由组合定律 高茎豌豆与短茎豌豆,F 1 都为高茎。 让 F 1 自交得 F 2, 则 F 2 表现型及其比例 _______________________ , 基因型及其比例为 __________________________ 。 高茎∶矮茎 = 3 ∶ 1 DD ∶ Dd.
一、 两对相对性状的遗传实验 × P F 1 个体数: : 3 : 3 : 1 黄色圆粒 绿色皱粒 F 2 黄色圆粒 绿色皱粒绿色圆粒 黄色皱粒 × 黄色圆粒.
§1.2 孟德尔的豌豆杂交实验(二). 两对相对性状的遗传实验 对每一对相对性状单 独进行分析 圆粒( =423 ) 皱粒( =133 ) 黄色( =416 ) 绿色( =140 ) 其中 圆粒 : 皱粒接近 3 : 1 黄色:绿色接近 3 : 1.
遗传系谱图的分析. 一、首先同学们要熟知书本上所列出的 几种常见遗传病的遗传方式和特点。 典型病例遗传方式遗传特点 白化病 先天性聋哑 常染色体 隐性 ①一般隔代发病;②患者为隐性纯 合体;③男女患病机会均等 多指 并指 常染色体 显性 ①通常代代有患者;②正常人为隐 性纯合体;③男女患病机会均等。
第 2 节 自由组合定律. P × 黄色圆形 绿色皱形 × F1F1 F2F2 黄色 圆形 黄色 皱形 绿色 圆形 黄色 圆形 绿色 皱形 个体数 比数 9 ∶ 3 ∶ 3 ∶ 1 F 2 出现不同对性状之间的 自由组合,出现与亲本性 状不同的新类型。 现象: 单独分析每对相对性状.
第一节 人口的数量变化.
德 国 鼓 励 生 育 的 宣 传 画.
控制方长投下的子公司,需要编制合并报表的演示思路
复 习 基 因 的 自 由 组 合 定 律 复习基因的自由组合定律.
8 企业信息管理的定量分析 第八讲 企业信息管理的定量分析 8.1 企业信息化水平的测评 8.2 企业信息管理绩效的测评.
高三生物一轮复习落实的 具体措施 胶南市第二中学 石仁全.
课堂模式——变与不变 庐阳区教研室 李玲玲 2015年3月.
1、减数第一次分裂后期随着同源染色体的分离,同源染色体上的等位基因(A和a)也随之分离。 GO 没有减数分裂就没有遗传规律。
基因的自由组合定律.
第2节 孟德尔的豌豆杂交实验(二).
孟德尔的豌豆杂交实验(一).
单元4 生物的遗传 第1讲 基因的分离定律.
高中生物新课程复习课件系列精品 《遗传与进化》复习要点.
第六课 遗传与变异 第七课时 生物的变异.
第2节  孟德尔的豌豆杂交实验(二).
第 2 节 孟德尔的豌豆杂交实验(二).
黄色圆粒 × 绿色皱粒 黄色圆粒 (一) 两对相对性状的遗传实验 P F1 F2 黄色圆粒 绿色圆粒 黄色皱粒 绿色皱粒 比例
1.基因自由组合定律的适用条件 (1)有性生殖生物的性状遗传(细胞核遗传)。 (2)两对及两对以上相对性状遗传。 (3)控制两对或两对以上相对性状的等位基因位于不同对同 源染色体上。
自由组合定律中的 比例及概率计算 上杭二中 吴文丽.
遗传病归纳 常染色体上 隐性遗传病 X染色体上 常染色体上 显性遗传病 X染色体上 伴Y染色体遗传病
第六章 遗传和变异 1.植物叶肉细胞内遗传物质的载体不包括( ) A.染色体 B.质体 C.线粒体 D.核糖体
高二会考复习之—— 遗传定律. 高二会考复习之—— 遗传定律 复习要点: 一、相关知识 二、基因的分离定律和自由组合定律 三、孟德尔遗传规律的现代解释 四、遗传定律的常见题型 孟德尔成功的原因 遗传定律的适用范围 几个重要的概念 关于基因、性状的概念及关系.
生物计算 我们该算计谁.
§6.3 性别决定和伴性遗传. §6.3 性别决定和伴性遗传 人类染色体显微形态图 ♀ ♂ 它们是有丝分裂什么时期的照片? 在这两张图中能看得出它们的区别吗?
高中生物课件 ——复习.
Chapter3 孟德尔遗传规律 本章要求 基本名词概念 3.1 分离定律 3.2 自由组合定律 3.3 数理统计原理在遗传研究中的应用
第六课 遗传与变异 第七课时 生物的变异.
欢迎光临 上师大外语附中 高三(3)班 执教老师 卢萍.
邵阳文化.
第2节 基因在染色体上.
考前重点突破—常见遗传题解题方法.
第二节 遗传平衡定律及应用 一、遗传平衡定律
讨论: 1.分离定律适用于几对基因控制着的几对相对性状? 2.一对相对性状中如何确定显隐性的关系?
欢迎光临指导.
遗传题的解题方法.
【中学生物相关资料】.
基 因 的 分 离 定 律 2002年4月.
第2课时 基因的分离定律. 第2课时 基因的分离定律 重习要点 ◆ 一对相对性状的基因型种类 及概率的计算 ◆ 一对相对性状遗传系谱求法及图的判断 ◆ 如何实验验证某性状是由一对基因控制 ◆ 一对相对性状的基因型种类 及概率的计算 ◆ 一对相对性状遗传系谱求法及图的判断 ◆ 如何实验验证某性状是由一对基因控制.
基 因 的 分 离 规 律.
第一节 孟德尔的豌豆杂交实验.
会考复习四 遗传的基本规律.
第二节 遗传的基本规律 一、基因的分离定律.
拇指竖起时弯曲情形 1、挺直2、拇指向指背面弯曲 食指长短 1、食指比无名指长 2、食指比无名指短 双手手指嵌合
第二节  遗传的基本规律 一、孟德尔及其豌豆杂交试验
第一节 分离定律 ——遗传学的奠基人孟德尔的实验为我们解决了这个问题
成才之路 · 语文 人教版 • 中国古代诗歌散文欣赏 路漫漫其修远兮 吾将上下而求索.
第2节 孟德尔的豌豆杂交实验(二).
专题 遗传的基本规律.
勤学精思 好问多练 一轮复习之 遗传、变异与基因工程 课时二、遗传的基本规律.
专题13 孟德尔定律.
一、基因分离定律的实质 位于一对同源染色体上的等位基因,具有 一定的独立性,生物体在进行减数分裂形成配
基于高中生物学理性思维培养的实践性课例开发
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一章 遗传因子的发现 §1.2 孟德尔的豌豆杂交实验(二) 授 课 人: 钟 承 邦 授课班级:高三(6)班.
植物激素的调节 一、生长素的发现过程 动物激素是由内分泌细胞合成与分泌。 1、达尔文实验:①证明单侧光照射能使 产生
基于高中生物学理性思维培养的实践性课例开发
  第二章 孟德尔定律 重点:分离定律和自由组合定律的遗传 学分析; 用棋盘法和分枝法计算遗传比 率; 用卡方检验测验适合度。 难点:用棋盘法和分枝法计算遗传比 率;
第二章 孟德尔规律.
Chapter 4 Mendelian Inheritance
自由组合定律的实质 塘下中学 谢思隆 2015届高考二轮小专题复习 考纲要求 2—1 孟德尔定律 (1)孟德尔遗传实验的科学方法
一个品种的奶牛产奶多,另一个品种的奶牛生长快,要想培育出既产奶多,又生长快的奶牛,可以采用什么方法?
Presentation transcript:

第2讲 孟德尔的豌豆杂交实验(二)

高考地位:5年多考 自由组合定律的解题思路与方法 2012出现的4个遗传题及 2011年出现的6个大题有8处 出现概率运算…… 一、基本方法:分解组合法(乘法原理和加法原理) 1.原理 分离定律是自由组合定律的基础。

2.思路 首先将自由组合定律问题转化为若干个分离定律问题。 在独立遗传的情况下,有几对基因就可分解为几个分离定律问题,如AaBb×Aabb可分解为如下两个分离定律:Aa×Aa,Bb×bb;然后按照数学上的乘法原理和加法原理根据题目要求的实际情况进行重组。此法“化繁为简,高效准确”,望深刻领会以下典型范例,熟练掌握这种解题方法。

二、基本题型分类讲解 (一)种类问题 1.配子类型的问题 规律:某一基因型的个体所产生配子种类数等于2n种(n为等位基因对数)。 如:AaBbCCDd产生的配子种类数 Aa   Bb   CC   Dd ↓    ↓   ↓   ↓ 2  ×  2  ×  1  ×  2=8种

2.配子间结合方式问题 规律:两基因型不同的个体杂交,配子间结合方式种类数等于各亲本产生配子种类数的乘积。 如:AaBbCc与AaBbCC杂交过程中,配子间结合方式有多少种? 先求AaBbCc、AaBbCC各自产生多少种配子。 AaBbCc→8种配子,AaBbCC→4种配子。 再求两亲本配子间结合方式。由于两性配子间结合是随机的,因而AaBbCc与AaBbCC配子间有8×4=32种结合方式。

3.已知双亲基因型,求双亲杂交后所产生子代的基因型种类数与表现型种类数 规律:两基因型已知的双亲杂交,子代基因型(或表现型)种类数等于将各性状分别拆开后,各自按分离定律求出子代基因型(或表现型)种类数的乘积。 如AaBbCc与AaBBCc杂交,其后代有多少种基因型?多少种表现型?

先看每对基因的传递情况: Aa×Aa→后代有3种基因型(1AA∶2Aa∶1aa);2种表现型; Bb×BB→后代有2种基因型(1BB∶1Bb);1种表现型; Cc×Cc→后代有3种基因型(1CC∶2Cc∶1cc);2种表现型。 因而AaBbCc×AaBBCc→后代中有3×2×3=18种基因型;有2×1×2=4种表现型。

(二)概率问题 1.已知双亲基因型,求子代中某一具体基因型或表现型所占的概率 规律:某一具体子代基因型或表现型所占比例应等于按分离定律拆分,将各种性状及基因型所占比例分别求出后,再组合并乘积。 如基因型为AaBbCC与AabbCc的个体杂交,求: ①产生基因型为AabbCc个体的概率; ②产生表现型为A_bbC_的概率。

2.已知双亲基因型,求子代中纯合子或杂合子出现的概率 规律:子代纯合子的出现概率等于按分离定律拆分后各对基因出现纯合子的概率的乘积。 子代杂合子的概率=1-子代纯合子概率。 如上例中亲本组合AaBbCC×AabbCc,则

(三)比值问题——已知子代表现型分离比推测亲本基因型(逆推型) 正常规律举例: (1)9∶3∶3∶1⇒(3∶1)(3∶1)⇒(Aa×Aa)(Bb×Bb); (2)1∶1∶1∶1⇒(1∶1)(1∶1)⇒(Aa×aa)×(Bb×bb); (3)3∶3∶1∶1⇒(3∶1)(1∶1)⇒(Aa×Aa)×(Bb×bb)或(Bb×Bb)×(Aa×aa); (4)3∶1⇒(3∶1)×1⇒(Aa×Aa)×(BB×BB)或(Aa×Aa)×(BB×Bb)或(Aa×Aa)×(BB×bb)或(Aa×Aa)×(bb×bb)。

(四)利用自由组合定律预测遗传病概率 当两种遗传病之间具有“自由组合”关系时,各种患病情况的概率如表: 序号 类 型 计算公式 1 患甲病的概率m 则不患甲病概率为1-m 2 患乙病的概率n 则不患乙病概率为1-n 3 只患甲病的概率 m(1-n)=m-mn 4 只患乙病的概率 n(1-m)=n-mn

5 同患两种病的概率 Mn 6 只患一种病的概率 1-mn-(1-m)(1-n)或 m(1-n)+n(1-m) 7 患病概率 m(1-n)+n(1-m)+mn或 1-(1-m)(1-n) 8 不患病概率 (1-m)(1-n)

上表各种情况可概括如下图:

遗传高考题中均需要一定的解题方法技巧才能准确、规范、快速的解决问题,考生做题慢、答题失误往往是方法不得当。

【典例2】 一个正常的女人与一个并指(Bb)的男人结婚,他们生了一个白化病且手指正常的孩子。求再生一个孩子: (1)只患并指的概率是________。 (2)只患白化病的概率是________。 (3)既患白化病又患并指的男孩的概率是________。 (4)只患一种病的概率是________。 (5)患病的概率是________。

【训练2】 (经典重组题)以下两题的非等位基因位于非同源染色体上,且独立遗传。 (1)AaBbCc自交,求: ①亲代产生配子的种类数为________。 ②子代表现型种类数及重组类型数分别为________。 ③子代基因型种类数及新基因型种类数分别为________。

(2)AaBbCc×aaBbCC,则后代中 ①杂合子的概率为________。 ②与亲代具有相同基因型的个体概率为________。 ③与亲代具有相同表现型的个体概率为________。 ④基因型为AAbbCC的个体概率为________。 ⑤表现型与亲代都不同的个体的概率为________。

规避特殊比值导致的3个易错点 规避特殊比值导致的3个易错点 易错点1 对试题中出现的特殊比值(“9∶3∶3∶1”的变式比值)束手无策,找不准特殊比值蕴含的内在机理及比值的出现规律  点 拨 双杂合的F1自交和测交后代的表现型比例分别为9∶3∶3∶1和1∶1∶1∶1,但如果发生下面4种特别情况时,可采用“合并同类项”的方式推断比值如下表: