第十三章 轴对称 13.4 课题学习 最短路径问题学.科.网..

Slides:



Advertisements
Similar presentations
2013届高考复习方案(第一轮) 专题课件.
Advertisements

§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
職務法庭與 法官退場機制 行政訴訟及懲戒廳報告
氧气的制法 装置 原理 练习 随堂检测.
南美洲 吉林省延吉一高中 韩贵新.
第一篇:静力学 1 、研究的主要问题:力,力系的简化原理 及物体在力系作用下的平衡问题。 2 、研究方法:对物体(或物体系)进行受
 第20讲 中国的交通.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
第一章 证明(二) 第三节 线段的垂直平分线(一) 河南郑州第八中学 刘正峰
同学们好! 肖溪镇竹山小学校 张齐敏.
19.3 梯形(第1课时) 等腰梯形.
6.4平行 将四导四学稿打开到第13页 准备好三角尺、直尺、圆规、铅笔、方格纸 赵丽雅.
习题课 阶段方法技巧训练(一) 专训2 切线的判定和性质 的四种应用类型.
12.3 角的平分线的性质 (第2课时).
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
15.2线段的垂直平分线 六安皋城中学:付军. 15.2线段的垂直平分线 六安皋城中学:付军.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
3.1.4 三角形的中位线 授课人 曾剑英 课件制作曾剑英.
八年级上册数学 用数学知识解决实际问题 13.4 课题学习 最短路径问题 广东惠阳高级中学初中部 骆成锋.
第二十七章 相 似 相似三角形的判定 第1课时 平行线分线段成比例.
实数与向量的积.
线段的有关计算.
剪纸 剪纸. 剪纸 剪纸 浙教版八年级上册第二章第一节 2.1图形的轴对称 宁波市宁海县梅林初级中学 季 冰.
19.2 证明举例(2) —— 米 英.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
八年级 上册 第十三章 轴对称 课题学习 最短路径问题 湖北省通山县教育局教研室 袁观六.
. 1.4 全等三角形.
一个直角三角形的成长经历.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
3.4 圆心角(1).
1.5 三角形全等的判定 第2课时 “边角边”与线段的垂直平分线的性质.
第五章 相交线与平行线 三线八角.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
2.6 直角三角形(1).
例1.如图,已知:AB∥CD,∠A=70°∠DHE=70°,求证:AM∥EF
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
第十二章 全等三角形 角平分线的性质 (第2课时)
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
13.3 等腰三角形 (第3课时).
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
空间平面与平面的 位置关系.
3.4圆周角(一).
2015中考第一轮复习 确定圆的条件.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
24.2 与圆有关的位置关系 点和圆的位置关系.
高中数学必修 平面向量的基本定理.
數線上兩點的距離.
第 五 章 相交线与平行线复习 制作:LXL.
线段、角的轴对称性.
锐角三角函数(1) ——正 弦.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
制作者:王翠艳 李晓荣 o.
位似.
正方形的性质.
Presentation transcript:

第十三章 轴对称 13.4 课题学习 最短路径问题学.科.网.

如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么? 学.科.网.zxxk ① ② ③ 两点之间,线段最短

(Ⅰ)两点在一条直线异侧 连接AB,线段AB与直线L的交点P ,就是所求。 已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。 连接AB,线段AB与直线L的交点P ,就是所求。 P

思考??? 为什么这样做就能得到最短距离呢? 学.科.网.zxxk. 根据:两点之间线段最短.

如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短? 所以泵站建在点P可使输气管线最短 P 应用

(Ⅱ) 两点在一条直线同侧 三角形任意两边之和大于第三边 A B M P B/ 作法:① 作点B关于直线l的对称点B/. (Ⅱ) 两点在一条直线同侧 已知:如图,A、B在直线L的同一侧,在L上求一点,使得PA+PB最小. 作法:① 作点B关于直线l的对称点B/. A B l ② 连接AB/,交直线l于点P. 点P的位置即为所求. 为什么这样做就能得到最短距离呢? M P MA + MB′>PA+PB ′ B/ 即MA + MB′>PA+PB 三角形任意两边之和大于第三边

练习 问题:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短. 请你自己动手 试一试!

只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.

作法:作点B关于直线 a 的对称点点C,连接AC交直线a于点D,则点D为建抽水站的位置。 2. 如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点。 作法:作点B关于直线 a 的对称点点C,连接AC交直线a于点D,则点D为建抽水站的位置。 证明:在直线 a 上另外任取一点E,连接AE.CE.BE.BD, ∵点B.C关于直线 a 对称,点D.E 在直线 a上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE中,AE+EC>AC, 即 AE+EC>AD+DB 所以抽水站应建在河边的点D处, · C D A B E a

A· 1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) · B

作法:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, 所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD处,AB两地的路程最短。 A· M C N D E B

· C OA 的 对称点点F, 的对称点点E, 3.连接EF分别交直线OA.OB于点G.H, 则CG+GH+DH最短 B 4. 如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。 作法:1.作点C关于直线 OA 的 对称点点F, 2. 作点D关于直线 OB 的对称点点E, 3.连接EF分别交直线OA.OB于点G.H, 则CG+GH+DH最短 F G O A · C H D · E B

最短路线:A P Q B A B l M N P Q A/ B/

· C D · 证明:在直线OA 上另外任取一点G,连接… ∵点F,点C关于直线OA对称,点G.M在OA上,∴GF=GC,FM=CM, 同理HD=HE,ND=NE, ∴CM+MN+ND=FM+MN+NE=FE, CG+GH+HD=FG+GH+HE, 在四边形EFGH中, ∵FG+GH+HE>FE(两点之间,线段最短), 即CG+GH+HD>CM+MN+ND 即CM+MN+ND最短 F A O B D · · C E M N G H

(Ⅲ)一点在两相交直线内部 已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 分析:当AB、BC和AC三条边的长度恰好能够体现在一条直线上时,三角形的周长最小   D B C E

(Ⅲ)一点在两相交直线内部 已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求

3.某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? OA 的 对称点点D, 2. 作点C关于直线 OB 的对称点点E, 3.连接DE分别交直线OA.OB于点M.N, 则CM+MN+CN最短 D G M O A H C. . N E B

∴CM+CN+MN=DM+EN+MN=DE, CG+GH+HC=DG+GH+HE, ∵DG+GH+HE>DE(两点之间,线段最短),  证明:在直线OA 上另外任取一点G,连接… ∵点D,点C关于直线OA对称, 点G.H在OA上,∴DG=CG, DM=CM, 同理NC=NE,HC=HE, ∴CM+CN+MN=DM+EN+MN=DE, CG+GH+HC=DG+GH+HE, ∵DG+GH+HE>DE(两点之间,线段最短), 即CG+GH+HC>CM+CN+MN 即CM+CN+MN最短 A O B C. . E D M N G H

再见!