第二讲 数据统计与分析 秦 猛 南京大学物理系 参考教材:《概率论与数理统计》 高新祖 陈华钧 编著 南京大学出版社 1.

Slides:



Advertisements
Similar presentations
概率论与数理统计 §1.3 古典概型与几何概型. 本节主要内容  排列与组合公式  古典概型  几何概型 §1.3 事件的概率及性质.
Advertisements

小结与复习( 4 ). 1 、内容小结 互斥事件互斥事件 不对立不对立 特点特点 ⑴ A 、 B 不能同时发生, A 发生必 然 B 不发生。 ⑵事件 A+B 是随机事件 概率概率 ,又若 A 1 , A 2 , … , A n 彼此互斥,则 对立对立 特点特点 ⑴ A 、 B 不能同时发生,但必有一.
概率统计( ZYH ) 1.3 古典概型与几何概型 一、古典概型 二、几何概型. 概率统计( ZYH ) 回忆 1.1 节的试验, E 1,E 3,E 4 有共同特性: 一、古典概型 ①(有限性)试验的样本空间 Ω 中仅含有限个样本点: ②(等可能性)每个基本事件 {ω i } 发生的可能性相同 :
山东农业大学 概率论与数理统计 主讲人:程述汉 苏本堂 §1.3 古典概型 1. 古典概型  古典概型中事件概率的计算公式  古典概型的概率计算步骤  古典概型的概率计算举例.
1 概率论与数理统计第 3 讲 本讲义可在网址 或 ftp://math.shekou.com 下载.
§1.2 事件的概率 设在 n 次试验中,事件 A 发生了 m 次,则称 为事件 A 发生的频率. 频率 频率的性质 事件 A 、 B 互斥,则 可推广到有限个两两互斥事件的和事 件. 非负性 规范性 可加性 稳定性 某一定数    
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
古典概型习题课. 1 .古典概型 (1) 基本事件的特点 ①任何两个基本事件是 的. ②任何事件 ( 除不可能事件 ) 都可以表示成的和. 2 .古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1) 试验中所有可能出现的基本事件 . (2) 每个基本事件出现的可能性 . 互斥.
§1.2 §1.2随机事件的概率 0≤P(A)≤1 用一个数来度量可能性的大小。这个 数应该是事件本身所固有的,可以在相同 的条件下通过大量的重复试验予以识别和 检验;可能性大的事件用较大的数来度量, 可能性小的事件用较小的数来度量。这个 用来度量可能性大小的数称为事件的概率, 用 P(A) 表示。
概率统计序言.
高二数学 选修 条件概率(一).
初中数学 九年级(上册) 4.2 等可能条件下的概率(一)(2).
第三章 概率 单元复习 第一课时.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
古典概型习题课.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
1.4 古典概型(等可能概型) 1.古典概型 2.典型例题 3. 小结.
第二讲 加法公式乘法公式 本次课讲授第一章第2、3、4、5节; 下次课结束并总结第一章,开始讲授第二章第1节;
第二节 古典概型 (等可能概型).
3.1.3 概率的基本性质.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
25.2 用列举法求概率(第3课时) 保靖民中:张 强.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
事件的独立性.
事件的独立性与独立试验概型.
条件概率 Conditional Probability
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
一、条件概率 许多情况下,我们会遇到在事件A发生的条件下求事件B的概率问题,我们把这个概率称为在事件A发生的条件下事件B的条件概率。记作:P(B/A); 相应地,P(B)称为无条件概率。 例如:老张有3个孩子,已知老大是女孩,求另外两个孩子也是女孩的概率(假设男孩、女孩出生率相同)。 解:记A={老大是女孩},B={三个孩子都是女孩}
1.2 事件的频率与概率 一、事件的频率 二、概率的公理化体系 1.2 事件的频率与概率.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第三章 随机事件的概率.
概率论 Probability.
第一章 随机事件及其概率.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
§1.3 条件概率 条件概率与乘法公式   引例 袋中有7只白球,3只红球,白球中有4只木球,3只塑料球;红球中有2只木球,1只塑料球.现从袋中任取1球,假设每个球被取到的可能性相同.若已知取到的球是白球,问它是木球的概率是多少? 古典概型 设 A 表示任取一球,取得白球; B 表示任取一球,取得木球.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
《工程制图基础》 第四讲 几何元素间的相对位置.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
空间平面与平面的 位置关系.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
高中数学必修 平面向量的基本定理.
难点:连续变量函数分布与二维连续变量分布
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
用列举法求概率 (第二课时).
1.3 概率的定义及其运算 ? ? 从直观上来看,事件A的概率是指事件A发生的可能性 P(A)应具有何种性质?
笛卡儿说:“数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。”
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
位似.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
5.1 相交线 (5.1.2 垂线).
Presentation transcript:

第二讲 数据统计与分析 秦 猛 南京大学物理系 参考教材:《概率论与数理统计》 高新祖 陈华钧 编著 南京大学出版社 1

1.4 等可能概型(古典概型) 一、等可能概型 二、典型例题 三、几何概率 四、小结

一、等可能概型(古典概型) 1. 定义

2. 古典概型中事件概率的计算公式 设试验 E 的样本空间由n 个样本点构成, A 为 E 的任意一个事件,且包含 m 个样本点,则事 称此为概率的古典定义.

3. 古典概型的基本模型:摸球模型 (1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从袋中无 3. 古典概型的基本模型:摸球模型 (1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从袋中无 放回地依次摸出2只球,求这2只球都是白球的概率. 解 基本事件总数为 A 所包含基本事件的个数为

(2) 有放回地摸球 问题2 设袋中有4只红球和6只黑球,现从袋中有放 回地摸球3次,求前2次摸到黑球、第3次摸到红球 的概率. 解 第3次摸到红球 4种 6种 第2次摸到黑球 第1次摸到黑球 6种 第2次摸球 10种 第3次摸球 10种 第1次摸球 10种

1o 电话号码问题 在7位数的电话号码中,第一位不能为0,求数字0出现3次的概率. 基本事件总数为 A 所包含基本事件的个数为 课堂练习 1o 电话号码问题 在7位数的电话号码中,第一位不能为0,求数字0出现3次的概率. 2o 骰子问题 掷3颗均匀骰子,求点数之和为4的 概率. 70

4.古典概型的基本模型:球放入杯子模型 (1)杯子容量无限 问题1 把 4 个球放到 3个杯子中去,求第1、2个 问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球. 4个球放到3个杯子的所有放法

因此第1、2个杯子中各有两个球的概率为

(2) 每个杯子只能放一个球 问题2 把4个球放到10个杯子中去,每个杯子只能 放一个球, 求第1 至第4个杯子各放一个球的概率. 解 第1至第4个杯子各放一个球的概率为

课堂练习 1o 分房问题 将张三、李四、王五3人等可能地 分配到3 间房中去,试求每个房间恰有1人的概率. 2o 生日问题 某班有20个学生都 是同一年出生的,求有10个学生生 日是1月1日,另外10个学生生日是 12月31日的概率.

二、典型例题 解

解 在N件产品中抽取n件的所有可能取法共有 在 N 件产品中抽取n件,其中恰有k 件次品的取法 共有 于是所求的概率为

三、几何概率 定义 当随机试验的样本空间是某个区域,并且任意一点落在度量 (长度、 面积、体积) 相同的子区域是等可能的,则事件 A 的概率可定义为 说明 当古典概率的试验结果为连续无穷多个时, 就归结为几何概型.

会面问题 例7 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不牵 连.求甲、乙两人能会面的概率. 解 那么 两人会面的充要条件为

若以 x, y 表示平面 上点的坐标 , 则有 故所求的概率为

例8 甲、乙两人约定在下午1 时到2 时之间到某 站乘公共汽车 , 又这段时间内有四班公共汽车,它们的开车时刻分别为 1:15、1:30、1:45、2:00.如果甲、乙约定 (1) 见车就乘; (2) 最多等一辆 车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时 刻是互相不牵连的,且每人在 1 时到 2 时的任何时刻到达车 站是等可能的. 80

解 设 x, y 分别为 甲、乙两人到达的时刻, 则有 见车就乘 的概率为

最多等一辆车,甲、乙 同乘一车的概率为

蒲丰投针试验 例9 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(a>0)的一些平行直 蒲丰资料 例9 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(a>0)的一些平行直 线,现向此平面任意投掷一根长为b( b<a )的针,试求 针与某一平行直线相交的概率. 解

  由投掷的任意性可知, 这是一个几何概型问题.

蒲丰投针试验的应用及意义

历史上一些学者的计算结果(直线距离a=1) 3.1795 859 2520 0.5419 1925 Reina 3.1415929 1808 3408 0.83 1901 Lazzerini 3.1595 489 1030 0.75 1884 Fox 3.137 382 600 1.0 1860 De Morgan 3.1554 1218 3204 0.6 1855 Smith 3.1596 2532 5000 0.8 1850 Wolf 相交次数 投掷次数 针长 时间 试验者

利用蒙特卡罗(Monte Carlo)法进行计算机模拟. 单击图形播放/暂停 ESC键退出

四、小结 试验结果 连续无穷 最简单的随机现象 古典概型 几何概型 古典概率

第五节 条件概率 一、条件概率 二、乘法定理 三、全概率公式与贝叶斯公式 四、小结

一、条件概率 将一枚硬币抛掷两次 ,观察其出现正反两面的情况,设事件 A为 “至少有一次为正面”,事件B为“两次掷出同一面”. 现在来求已知事件A 已经发生的条件下事件 B 发生的概率. 1. 引例 分析 事件A 已经发生的条件下事件B 发生的概率,记为

2. 定义 同理可得 为事件 B 发生的条件下事件 A 发生的条件概率.

3. 性质

二、 乘法定理

例1 一盒子装有4 只产品, 其中有3 只一等品、1只二等品. 从中取产品两次, 每次任取一只, 作不放回抽样 例1 一盒子装有4 只产品, 其中有3 只一等品、1只二等品. 从中取产品两次, 每次任取一只, 作不放回抽样. 设事件A为“第一次取到的是一等品” 、事件B 为“第二次取到的是一等品”.试求条件概率 P(B|A). 解

由条件概率的公式得

例2 某种动物由出生算起活20岁以上的概率为 0.8, 活到25岁以上的概率为0.4, 如果现在有一个 20岁的这种动物, 问它能活到25岁以上的概率是 多少? 解 设 A 表示“ 能活 20 岁以上 ” 的事件, B 表示 “ 能活 25 岁以上”的事件, 则有

抓阄是否与次序有关? 例3 五个阄, 其中两个阄内写着“有” 字, 三个阄内不写字 ,五人依次抓取, 问各人抓到“有”字阄的概率是否相同? 解 则有

依此类推 故抓阄与次序无关.

摸球试验 例4 解

此模型被波利亚用来作为描述传染病的数学模型.

例5 设某光学仪器厂制造的透镜, 第一次落下时打破的概率为1/2,若第一次落下未打破, 第二次落下打破的概率为7/10 , 若前两次落下未打破, 第三次落下打破的概率为9/10.试求透镜落下三次而未打破的概率. 解 以B 表示事件“透镜落下三次而未打破”.

三、全概率公式与贝叶斯公式 1. 样本空间的划分

2. 全概率公式 全概率公式

证明 化整为零 各个击破 图示

说明 全概率公式的主要用处在于它可以将一个复杂事件的概率计算问题,分解为若干个简单事件的概率计算问题,最后应用概率的可加性求出最终结果.

例6 有一批同一型号的产品,已知其中由一厂生产的占 30% ,二厂生产的占 50% ,三厂生产的占 20%,又知这三个厂的产品次品率分别为2% , 1%,1%,问从这批产品中任取一件是次品的概率是多少? 解 设事件 A 为“任取一件为次品”,

1% 30% 2% 50% 1% 20% 由全概率公式得

3. 贝叶斯公式 贝叶斯资料 称此为贝叶斯公式.

证明

例7

(1) 由全概率公式得 (2) 由贝叶斯公式得

例8 解

由贝叶斯公式得所求概率为

先验概率与后验概率 上题中概率 0.95 是由以往的数据分析得到的, 叫 做先验概率. 而在得到信息之后再重新加以修正的概率 0.97 叫做后验概率.

例9 解

由贝叶斯公式得所求概率为 即平均1000个具有阳性反应的人中大约只有87人 患有癌症.

四、小结 1.条件概率 乘法定理 全概率公式 贝叶斯公式

第六节 独立性 一、事件的相互独立性 二、几个重要定理 三、例题讲解 四、小结

一、事件的相互独立性 1.引例 则有

2.定义 说明 事件 A 与 事件 B 相互独立,是指事件 A 的发生与事件 B 发生的概率无关.

请同学们思考 两事件相互独立与两事件互斥的关系. 两事件相互独立 二者之间没 有必然联系 两事件互斥 例如 由此可见两事件相互独立,但两事件不互斥.

由此可见两事件互斥但不独立.

3.三事件两两相互独立的概念

4.三事件相互独立的概念 注意 三个事件相互独立 三个事件两两相互独立

推广 n 个事件相互独立 n个事件两两相互独立

二、几个重要定理 证明

证明

又因为 A、B 相互独立, 所以有

两个结论

三、例题讲解 射击问题 例1 设每一名机枪射击手击落飞机的概率都是0.2,若10名机枪射击手同时向一架飞机射击,问击落飞机的概率是多少? 解 例1 设每一名机枪射击手击落飞机的概率都是0.2,若10名机枪射击手同时向一架飞机射击,问击落飞机的概率是多少? 射击问题 解 事件 B 为“击落飞机”,

例2 甲、乙、丙三人同时对飞机进行射击, 三人 击中的概率分别为 0.4, 0.5, 0.7, 飞机被一人击中 而被击落的概率为0.2 ,被两人击中而被击落的概 率为 0.6 , 若三人都击中飞机必定被击落, 求飞机 被击落的概率. 解 A, B, C 分别表示甲、乙、丙击中飞机 ,

因而,由全概率公式得飞机被击落的概率为

伯恩斯坦反例 例3 一个均匀的正四面体, 其第一面染成红色, 第二面染成白色 , 第三面染成黑色,而第四面同 时染上红、白、黑三种颜色.现以 A , B,C 分别 记投一次四面体出现红、白、黑颜色朝下的事件, 问 A,B,C是否相互独立? 解 由于在四面体中红、 白、黑分别出现两面, 因此 又由题意知

故有 则三事件 A, B, C 两两独立. 由于 因此 A,B,C 不相互独立.

例4 同时抛掷一对骰子,共抛两次,求两次所得点 数分别为7与11的概率. 解 事件 A 为两次所得点数分别为 7 与 11. 则有

例5 解

例6 要验收一批(100件)乐器.验收方案如下:自该批乐器中随机地取3件测试(设3件乐器的测试是相互独立的),如果3件中至少有一件在测试中被认为音色不纯,则这批乐器就被拒绝接收.设一件音色不纯的乐器经测试查出其为音色不纯的概率为0.95;而一件音色纯的乐器经测试被误认为不纯的概率为0.01.如果已知这100件乐器中恰有4件是音色不纯的.试问这批乐器被接收的概率是多少? 解

已知一件音色 纯的乐器 , 经测试被认为音色纯的概率为 0.99 , 而一件音色不纯的乐器,经测试被认为音色纯的 概率为0.05, 并且三件乐器的测试是相互独立的, 于是有

解 “甲甲”, “乙甲甲”, “甲乙甲”;

“甲乙甲甲”, “乙甲甲甲”, “甲甲乙甲”;

四、小结

课后作业 习题一: 第17、27、33、35题