八年级上册数学 用数学知识解决实际问题 13.4 课题学习 最短路径问题 广东惠阳高级中学初中部 骆成锋
探索新知 问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题: 问题1 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地.到河边什么地方饮马可使他所走的路线全程 最短? B A l
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马 问题”. 你能将这个问题抽象为数学问题吗? B A l
追问 这是一个实际问题,你打算首先做什么? 追问 这是一个实际问题,你打算首先做什么? 将A,B 两地抽象为两个点,将河l 抽象为一条直 线. B · A l
追问 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? · l A 追问 你能利用轴对称的 有关知识,找到上问中符合条 件的点B′吗?
问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? · l A B′ C 作法: (1)作点B 关于直线l 的对称 点B′; (2)连接AB′,与直线l 相交 于点C. 则点C 即为所求.
问题3 你能用所学的知识证明AC +BC最短吗? · l A B′ C
问题3 你能用所学的知识证明AC +BC最短吗? 证明:如图,在直线l 上任取一点C′(与点C 不 重合),连接AC′,BC′,B′C′. 由轴对称的性质知, BC =B′C,BC′=B′C′. ∴ AC +BC= AC +B′C = AB′, AC′+BC′= AC′+B′C′. ∵在△AB′C′中,AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′. 即 AC +BC 最短. B · l A B′ C C′
运用新知 练习 如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返
基本思路: 由于两点之间线段最短,所以首先可连接PQ,线 段PQ 为旅游船最短路径中的必经线路.将河岸抽象为 一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到 一点R,使PR与QR 的和最 小”. A B C P Q 山 河岸 大桥
如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边给马喝水,然后回到帐篷,请你帮助他确定这一天的最短路线。
问题2 造桥选址问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN. 桥建在何处才能使从A到B的路径AMNB最短 思维分析:1.如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢? 2.利用线段公理解决问题:我们遇到了什么障碍呢? 思维点拨:在不改变AM+MN+BN的前提下把桥转 化到一侧呢?什么图形变换能帮助我们呢? (估计有以下方法) 1.把A平移到岸边. 2.把B平移到岸边. 3.把桥平移到和A相连. 4.把桥平移到和B相连. 上述方法都能做到使AM+MN+BN不变呢?请检验. 1、2两种方法改变了.怎样调整呢?把A或B分别向下或上平移一个桥长,那么怎样确定桥的位置呢?
问题2 造桥选址问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN. 桥建在何处才能使从A到B的路径AMNB最短 解:如图,平移A到A’,使AA’等于河宽,连接A’B交河岸于N.作桥MN, 此AM+MN+BN最短. 理由:另任作桥M’N’,连接AM’,BN’,A’N’. 由平移性质可知,AM=A’N,AA’=MN=M’N’,AM’=A’N’. AM+MN+BN转化为AA’+A’B, 而AM’+M’N’+BN’ 转化为AA’+A’N’+BN’. 在△A’N’B中,由线段公理知A’N’+BN’>A’B. 因此AM’+M’N’+BN’> AM+MN+BN, 如图所示:
归纳小结 (1)本节课研究问题的基本过程是什么? (2)轴对称在所研究问题中起什么作用?
布置作业 课本91页练习.