第十四讲 有关数论算法 内容提要: 初等数论概念 最大公约数 模运算和模线性方程 中国余数定理 2019/4/29.

Slides:



Advertisements
Similar presentations
质数和合数 中心小学 顾禹 人教版小学五年级数学下册 一、激趣导入 提示:密码是一个三位 数,它既是一个偶数, 又是 5 的倍数;最高位是 9 的最大因数;中间一位 是最小的质数。你能打 开密码锁吗?
Advertisements

1 、谁能说说什么是因数? 在整数范围内( 0 除外),如果甲数 能被乙数整除,我们就说甲数是乙数的 倍数,乙数是甲数的因数。 如: 12÷4=3 4 就是 12 的因数 2 、回顾一下,我们认识的自然数可以分 成几类? 3 、其实自然数还有一种新的分类方法, 你知道吗?这就是我们今天这节课的学.
因数与倍数 2 、 5 的倍数的特征
3 的倍数特征 抢三十
质数和合数 富县北教场小学 潘小娟 1 、什么叫因数? 2 、自然数分几类? 奇数和偶数. 3 、自然数还有一种新的分类方法, 就是按一个数的因数个数来分. 4 、写出 1—20 的因数。 前置性作业.
质数和合数 2 的因数( ) 6 的因数( ) 10 的因数 ( ) 12 的因数 ( ) 14 的因数 ( ) 11 的因数 ( ) 4 的因数( ) 9 的因数( ) 8 的因数( ) 7 的因数( ) 1 、 2 、 3 、 4 、 6 、 12 1 、 11 1 、 2 、 5 、 10.
本节课我们主要来学习素数和合 数,同学们要了解素数和合数的 定义,能够判断哪些是素数,哪 些是合数,知道 100 以内的素数。

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
因数与倍数 2 、 5 的倍数的特征 绿色圃中小学教育网 扶余市蔡家沟镇中心小学 雷可心.
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
2 、 5 的倍数的特征 玉田百姓. 1 、在 2 、 3 、 5 、 8 、 10 、 12 、 25 、 40 这几个数中, 40 的因数有几个? 5 的倍数有几个? 复习: 2 、在 6 、 10 、 12 、 15 、 18 、 20 这几个数中,哪些数 是 2 的倍数?哪些数是 5 的倍数?
因数与倍数 2 、 5 、 3 的倍数的特 征 新人教版五年级数学下册 执教者:佛山市高明区明城镇明城小学 谭道芬.
重庆市九龙坡区走马小学 邓华. 一、复习导入,揭示课题 下面哪些数是 2 的倍数?哪些数是 5 的倍数? 2,5的倍数的特征:只看个位上数就能进行判断。 2的倍数:个位上是0,2,4,6,8的数。
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
2 、 5 的倍数特征 集合 2 的倍数(要求) 在百数表上依次将 2 的倍数找出 并用红色的彩笔涂上颜色。
复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
10.2 立方根.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
2-7、函数的微分 教学要求 教学要点.
余角、补角.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第二章 矩阵(matrix) 第8次课.
第三章 二次剩余.
走进编程 程序的顺序结构(二).
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
动态规划(Dynamic Programming)
计算系统与网络安全 Computer System and Network Security
第一章 函数与极限.
6.4不等式的解法举例(1) 2019年4月17日星期三.
密码学中常用的数学知识 公钥密码体制的基本概念 RSA算法
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
离散数学─归纳与递归 南京大学计算机科学与技术系
第十四讲 有关数论算法 内容提要: 初等数论概念 最大公约数 模运算和模线性方程 中国余数定理 2019/4/24.
复习.
1.2 有理数 第1课时 有理数 伏家营中学 付宝华.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
初 等 数 论 辅导课程五 主讲教师:曹洪平.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
問題解決與流程圖 高慧君 台北市立南港高中 2006年12月22日.
2、5的倍数的特征 马郎小学 陈伟.
2.2矩阵的代数运算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
《离散结构》 二元运算性质的判断 西安工程大学计算机科学学院 王爱丽.
§2 方阵的特征值与特征向量.
2、5、3的倍数的特征.
离散数学-集合论 南京大学计算机科学与技术系
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
陪集 例:三次对称群S3={e,1, 2, 3, 4, 5}的所有非平凡子群是:
离散数学─归纳与递归 南京大学计算机科学与技术系
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

第十四讲 有关数论算法 内容提要: 初等数论概念 最大公约数 模运算和模线性方程 中国余数定理 2019/4/29

初等数论概念 整除性和约数 素数和合数 1)d | a ,读作”d整除a”,表示a是d的倍数; 2)约数:d | a 且d>0,则d是a的约数;(即定义约数为非负整数) 3)对整数a最小约数为1,最大为|a|。其中,1和|a|为整数的平凡约数,而a的非平凡约数称为a的因子; 素数和合数 1) 素数(质数):对于整数a > 1,如果它仅有平凡约数1和a,则a为素数; 2) 合数:不是素数的整数a ,且 a > 1; 3) 整数1被称为基数,它不是素数也不是合数; 4) 整数0和所有负整数既不是素数也不是合数; 2019/4/29

初等数论概念 已知一个整数n,所有整数都可以划分为是n的倍数的整数,以及不是n的倍数的整数。对于不是n的倍数的那些整数,又可以根据它们除以n所得的余数来进行分类。——数论的大部分理论都是基于这种划分 除法定理(Th31.1): 其中,q为商,值r = a mod n称为余数。 根据整数模n所得的余数,可以把整数分为n个等价类。包含整数a的模n等价类为:[a]n = { a + nk | k ∈ Z }。如 [3]7= {…, -4, 3, 10, 17, …} 模n等价类可以用其最小非负元素来表示,如3表示[3]7 性质:如果 a ∈ [b]n , 则 a ≡ b ( mod n ) 2019/4/29

初等数论概念 2019/4/29

初等数论概念 公约数:d是a的约数也是b的约数,则d是a和b的公约数。 公约数性质: 最大公约数: gcd基本性质: -- d | a且d | b蕴含着d | (a+b)和d | (a-b) -- 对任意整数x和y,有 d | a 且 d | b 蕴含着 d | ( ax + by ) -- 如果a | b 则 |a| ≤|b|或者b=0, 这说明 ”a|b且b|a,则a = +/- b” 最大公约数: -- gcd( a, b)表示两个不同时为0的整数a和b的最大公约数; -- gcd(a,b)介于1和min(|a|, |b|) 之间; gcd基本性质: -- gcd ( a, 0 ) = |a|; -- gcd ( a, ka ) = |a|; 2019/4/29

初等数论概念 最大公约数性质: 2019/4/29

初等数论概念 互质数:如果gcd(a,b)=1,则称a与b为互质数; 如果两个整数中每一个数都与一个整数p互为质数,则它们的积与p互为质数,即: 唯一因子分解: 定理31.7: 对所有素数p和所有整数a, b, 如果 p | ab,则 p | a 或 p | b(或者两者都成立) 2019/4/29

最大公约数 一种直观求解GCD: 根据a和b的素数因子分解,求出正整数a和b的最大公约数gcd(a,b),即: 注:这种解法需要整数的素因子分解,而素因子分解是一个很难的问题(NP问题) 2019/4/29

最大公约数 欧几里得算法 Th.31.9(GCD递归定理): 对任何非负整数a和正整数b,有gcd(a,b) = gcd(b, a mod b) ; * 可以通过证明gcd(a,b)与 gcd(b, a mod b)能相互整除来证明该定理! P526 伪代码: Euclid(a, b) { if b=0 then return a; else return Euclid(b, a mod b); } 例子: Euclid( 30, 21 ) = Euclid ( 21, 9 ) = Euclid ( 9, 3 ) = Euclid ( 3, 0 ) 2019/4/29

最大公约数 Euclid算法的运行时间: 2019/4/29

最大公约数 扩展的Euclid算法: 2019/4/29

最大公约数 用计算gcd( 99, 78 )的例子说明Extended-Euclid的执行过程: a b floor(a/b) d x y 99 78 1 3 -11 14 78 21 3 3 -11 21 15 1 3 -2 15 6 2 3 1 -2 6 3 2 3 1 3 1 3 - (d, x, y) = ( a, 1, 0 ) 2019/4/29

模运算和模线性方程 群(S, ⊕)是一个集合S和定义在S上的二元运算⊕,且满足封闭性、单位元、结合律、逆元等4个性质; 交换群(a ⊕ b = b ⊕ a)和有限群: 2019/4/29

模运算和模线性方程 其中,p包括能整除n的所有素数(如果n是素数,则也包括n本身) 直观上看,开始时有一张n个余数组成的表{0,1,…,n-1},然后对每个能整除n的素数p,在表中划掉所有是p的倍数的数。 如果p是素数,则Zp*={1,2,…,p-1},并且Φ(p) = p-1 如果n是合数,则Φ(n)<n-1 14

模运算和模线性方程 问题描述: 15

模运算和模线性方程 定理1: 方程ax ≡ b (mod n) 对于未知量x有解,当且仅当 gcd( a, n) | b。 定理2: 方程ax ≡ b (mod n)或者对模n有d个不同的解,其中 d = gcd(a, n),或者无解。 2019/4/29

模运算和模线性方程 17

模运算和模线性方程 输入a和n为任意正整数,b为任意整数 Modular-Linear-Equation-Solver( a, b, n) { (d’, x’, y’ )  Extended-Euclid( a, n); if d | b then x0  x’(b/d) mod n for i  0 to d-1 do printf (x0+i(n/d)) mod n else print “no solutions” } 18

模运算和模线性方程 求解方法: 19

模运算和模线性方程 2019/4/29

中国余数定理 中国余数定理,也称中国剩余定理,孙子剩余定理。 从《孙子算经》到秦九韶《数书九章》对一次同余式问题的研究成果,在19世纪中期开始受到西方数学界的重视。1852年,英国传教士伟烈亚力向欧洲介绍了 《孙子算经》的“物不知数”题和秦九韶的“大衍求一术”;1876年,德国人马蒂生指出,中国的这一解法与西方19世纪高斯《算术探究》中关于一次同余式 组的解法完全一致。从此,中国古代数学的这一创造逐渐受到世界学者的瞩目,并在西方数学史著作中正式被称为“中国剩余定理”。 2019/4/29

中国余数定理 韩信点兵: 韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让 敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7 报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵。 这个故事中所说的韩信点兵的计算方法,就是现在被称为“中国剩余定理”的一次同余式解法。它是中国古代数学家的一项重大创造,在世界数学史上具有重要的地位。 2019/4/29

中国余数定理 用数学语言来表述就是如下线性同余方程 《孙子算经》实际上是给出了这类一次同余式组 的一般解: 最早提出并记叙这个数学问题的,是南北朝时期的数学著作《孙子算经》中的“物不知数”题目。这道“物不知数”的题目是这样的: “今有一些物不知其数量。如果三个三个地去数它,则最后还剩二个;如果五个五个地去数它,则最后还剩三个;如果七个七个地去数它,则最后也剩二个。问:这些物一共有多少?” 用数学语言来表述就是如下线性同余方程 《孙子算经》实际上是给出了这类一次同余式组 的一般解: 2019/4/29

中国余数定理 但由于题目比较简单,甚至用试猜的方法也能求得,所以《孙子算经》尚没有上升到一套完整的计算程序和理论的高度。 真正从完整的计算程序和理论上解决这个问题的,是南宋时期的数学家秦九韶。秦九韶在他的《数书九章》中提出了一个数学方法“大衍求一术”,系统地论述了一次同余式组解法的基本原理和一般程序。 如今,中国余数定理广泛应用于通信领域。譬如,电子工程师发明的“中国余数码” (Chinese Remainder Code) 是一种常用的纠错编码 (error correcting code)。 2019/4/29

xa1M1’M1+a2M2’M2+…+akMk’Mk(mod n) 中国余数定理 xa1M1’M1+a2M2’M2+…+akMk’Mk(mod n) 其中Mi=n/ni, Mi’Mi1(mod ni), 1≤i≤k. 2019/4/29

x 1×3×462+1×5×385+1×4×330 + 1×10×210 6731 2111(mod 2310). 例 韩信点兵:有兵一队, 若列成五行纵队, 则末行一人; 成六行纵 队, 则末行五人; 成七行纵队,则末行四人; 成十一行纵队,则末 行十人, 求兵数. 解: 设x是所求兵数, 则依题意: x1(mod 5), x 5(mod 6) x4(mod 7), x 10(mod 11) 令n1=5,n2=6,n3=7,n4=11,b1=l, b2=5, b3=4, b4=10. 于是n=n1n2n3n4=5×6×7 × 11=2310, M1=2310/5=462, M2=385, M3=330, M4=210. 有M’1M11(mod 5), 即1462 M’1 2M’1(mod 5) ,因此M’1=3. 同 理可求M’2=1, M’3=1, M’4=1. 故解为: x 1×3×462+1×5×385+1×4×330 + 1×10×210 6731 2111(mod 2310). 即 x=2111+2310k, k=0,1,2,…. 15:51:43

作业: 31.1-12, 31.2-4, 31.4-3 2019/4/29