Hopfield神经网络模型与学习算法.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
§3.4 空间直线的方程.
Hamming Neutral Network
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
史忠植 中国科学院计算技术研究所 知识发现(数据挖掘) 第八章 神经网络 Neural Networks 史忠植 中国科学院计算技术研究所 /4/10.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
2-7、函数的微分 教学要求 教学要点.
第九章  Elman网络与学习算法 北京科技大学 信息工程学院 付冬梅
数据挖掘原理与SPSS Clementine应用宝典
计算机基础知识 丁家营镇九年制学校 徐中先.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第二章 矩阵(matrix) 第8次课.
强连通分量 无向图 1、任意两顶点连通称该图为连通图 2、否则将其中的极大连通子图称为连通分量 A D C B E 有向图
SOA – Experiment 3: Web Services Composition Challenge
元素替换法 ——行列式按行(列)展开(推论)
第一单元 初识C程序与C程序开发平台搭建 ---观其大略
第4章 非线性规划 一维搜索方法 2011年11月.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Ch 08.多层神经网络 1.
第05讲 反馈网络.
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
Artificial Neural Networks
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
神经信息学 平行分布式理论框架 史忠植 中科院计算所 2019/4/11.
简单介绍 用C++实现简单的模板数据结构 ArrayList(数组, 类似std::vector)
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
复习.
工业机器人知识要点解析 (ABB机器人) 主讲人:王老师
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第4章 Excel电子表格制作软件 4.4 函数(一).
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
6-1 求题图6-1所示双口网络的电阻参数和电导参数。
函 数 连 续 的 概 念 淮南职业技术学院.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第4课时 绝对值.
第六节 用频率特性法分析系统性能举例 一、单闭环有静差调速系统的性能分析 二、单闭环无静差调速系统的性能分析
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
1.非线性规划模型 2.非线性规划的Matlab形式
第七、八次实验要求.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2019/5/20 第三节 高阶导数 1.
§2 方阵的特征值与特征向量.
实验目的:掌握数据的顺序存储结构及它们在计算机中的操作。 实验内容:
主讲教师 欧阳丹彤 吉林大学计算机科学与技术学院
滤波减速器的体积优化 仵凡 Advanced Design Group.
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第十七讲 密码执行(1).
FVX1100介绍 法视特(上海)图像科技有限公司 施 俊.
入侵检测技术 大连理工大学软件学院 毕玲.
混沌保密通讯 实验人 郝洪辰( ) 李 鑫( ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
最小生成树 最优二叉树.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

Hopfield神经网络模型与学习算法

Hello,I’m John Hopfield 概述 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield教授于1982年提出,是一种单层反馈神经网络。 Hopfield网络是一种由非线性元件构成的反馈系统,其稳定状态的分析比前向神经网络要复杂得多。1984年,Hopfield设计并研制了网络模型的电路,并成功地解决了旅行商(TSP)计算难题(优化问题)。 Hello,I’m John Hopfield Hopfield网络分为离散型和连续型两种网络模型,分别记作DHNN (Discrete Hopfield Neural Network) 和CHNN (Continues Hopfield Neural Network) 。 2019/5/10

2.9.1离散Hopfield 神经网络 网络模型表示法一 2019/5/10

2.9.1离散Hopfield 神经网络 网络模型表示法二 2019/5/10

2.9.1离散Hopfield 神经网络 相关参数说明 任意神经元 与 间的突触权值 为,神经元之间连接是对称的,神经元自身无连接. 任意神经元 与 间的突触权值 为,神经元之间连接是对称的,神经元自身无连接. 每个神经元都同其他的神经元相连,其输出信号经过其他神经元又有可能反馈给自己 设Hopfield网络中有n个神经元,其中任意神经元的输入用 表示,输出 用表示,它们都是时间的函数,其中 也称为神经元在时刻 的状态。 2019/5/10

2.9.1离散Hopfield 神经网络 激励函数 2019/5/10

2.9.1离散Hopfield 神经网络 离散Hopfield网络的运行规则 (1)串行(异步)工作方式 (2)并行(同步)工作方式 在任—时刻,只有某—神经元 (随机的或确定的选择)依上式变化,而其他神经元的状态不变。 (2)并行(同步)工作方式 在任一时刻,部分神经元或全部神经元的状态同时改变。 2019/5/10

2.9.1离散Hopfield 神经网络 串行(异步)工作方式运行步骤 第一步 对网络进行初始化; 第二步 从网络中随机选取一个神经元; 第四步 按式(2-6)求出该神经元经激活函数处理后的输出,此时网络中的其他神经元的输出保持不变; 第五步 判断网络是否达到稳定状态,若达到稳定状态或满足给定条件则结束;否则转到第二步继续运行。 2019/5/10

2.9.1离散Hopfield 神经网络 稳定状态 若网络从某一时刻以后,状态不再发生变化,则称网络处于稳定状态 网络为对称连接,即;神经元自身无连接 能量函数在网络运行中不断降低,最后达到稳定 2019/5/10

2.9.1离散Hopfield 神经网络 网络中神经元能量函数变化量 2019/5/10

2.9.2 连续Hopfield 神经网络 网络模型 2019/5/10

2.9.2 连续Hopfield 神经网络 稳定性分析 将下式代入得: 因为 连续Hopfield网络模型是稳定的 2019/5/10

2.9.2 连续Hopfield 神经网络 连续Hopfield网络模型的主要特性 1)连续Hopfield网络的神经元作为I/O转换,其传输特性具有Sigmoid特性; 2)具有时空整合作用; 3)在神经元之间存在着大量的兴奋性和抑制性连接,这种联接主要是通过反馈来实现。 4)具有既代表产生动作电位的神经元,又有代表按渐进方式工作的神经元,即保留了动态和非线性两个最重要的计算特性。 Hopfield神经网络设计的目标就是使得网络存储一些特定的平衡点,当给定网络一个初始条件时,网络最后会在这样的点上停下来 2019/5/10

2.9.3 Hopfield 神经网络的MATLAB实现 MATLAB中Hopfield网络的重要函数和功能 函 数 名 功 能 satlin( ) 饱和线性传递函数 satlins( ) 对称饱和线性传递函数 newhop( ) 生成一个Hopfield回归网络 nnt2hop( ) 更新NNT 2.0 Hopfield回归网络 2019/5/10

2.9.3 Hopfield 神经网络的MATLAB实现 MATLAB中与Hopfield网络有关的重要函数和功能 newhop( ) 功能 生成一个Hopfield回归网络。 格式 net = newhop(T) 说明 net为生成的神经网络,具有在T中的向量上稳定的点;T是具有Q个目标向量的R*Q矩阵(元素必须为-1或1)。Hopfield神经网络经常被应用于模式的联想记忆中。Hopfield神经网络仅有一层,其激活函数用satlins( )函数,层中的神经元有来自它自身的连接权和阈值。 2019/5/10

2.9.3 Hopfield 神经网络的MATLAB实现 MATLAB中与Hopfield网络有关的重要函数和功能 satlins( ) 功能 对称饱和线性传递函数 格式 A = satlins(N) A输出向量矩阵;N是由网络的输入向量组成的S*Q矩阵,返回的矩阵A与N的维数大小一致,A的元素取值位于区间[0,1]内。当N中的元素介于-1和1之间时,其输出等于输入;当输入值小于-1时返回-1;当输入值大于1时返回1。 2019/5/10

2.9.3 Hopfield 神经网络的MATLAB实现 由点阵构成的数字2 由点阵构成的数字1 2019/5/10

例2-8程序 2019/5/10

小结 概述 离散Hopfield神经网络及工作过程 连续Hopfield神经网络 稳定性分析 Hopfield神经网络的MATLAB实现 实例分析 2019/5/10

谢谢! 2019/5/10