物理思想方法与高考能力要求(八) 处理带电粒子在磁场中运动的临界极值思维方法

Slides:



Advertisements
Similar presentations
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
Advertisements

2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
平面向量.
带电粒子在磁场中的 圆周运动(上) 庞留根 吕叔湘中学 2006年7月
精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
碰撞 两物体互相接触时间极短而互作用力较大
浅谈物理教学中迁移能力的培养 加强审题环节的教学 注重解题后知识点和解题方法的的归纳整理 加强变式训练 提高迁移能力
高中物理第二轮专题复习 电磁场问题.
第一讲:带电粒子在复合场中的运动.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
圆复习.
1.设圆的圆心是C(a,b),半径为r,则圆的标准方程是(x-a)2+(y-b)2=r2
5 高中物理选修3-1 第三章 磁场 磁场对运动电荷的作用力 学习目标
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
第8课时 直线和圆的 位置关系(2).
直线和圆的位置关系.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
直线和圆的位置关系(4).
同学们好! 肖溪镇竹山小学校 张齐敏.
专题达标测试 一、单项选择题 (每小题4分,共20分) 1.(2009·杭州市模拟二) P、Q是某电场中一条电场
第二课时 磁场对运动电荷的作用 金台区教研室 刘小刚
双曲线的简单几何性质 杏坛中学 高二数学备课组.
本节内容 平行线的性质 4.3.
15.2线段的垂直平分线 六安皋城中学:付军. 15.2线段的垂直平分线 六安皋城中学:付军.
第2讲 磁场对运动电荷的作用 1.洛伦兹力的大小 (1)v∥B时,洛伦兹力F= .(θ=0°或180°)
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
看一看,想一想.
磁场综合 版权所有—庞留根 ,.
计算题训练二 (时间:90分钟,满分100分) 1.(2009·佛山市质量检测二)(14分)如图1甲所示,
实数与向量的积.
线段的有关计算.
3.4 圆心角(1).
3.3 垂径定理 第2课时 垂径定理的逆定理.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
直线和圆的位置关系.
直线与圆的位置关系.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
注意:这里的F合为沿着半径(指向圆心)的合力
第15章 量子力学(quantum mechanics) 初步
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
第八章 理知识 第2单元 明考向 提能力 课堂考题 领悟 课下综合 提升. 第八章 理知识 第2单元 明考向 提能力 课堂考题 领悟 课下综合 提升.
直线和圆的位置关系 ·.
空间平面与平面的 位置关系.
《工程制图基础》 第五讲 投影变换.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
第4讲 专题 带电粒子在复合场中的运动 一、复合场 复合场是指 、 和重力场并存,或其中某两场并存,或分区域存在. 电场 磁场.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
第八章 磁 场 第3讲 带电粒子在复合场中的运动.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.2 平面向量基本定理.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
制作者:王翠艳 李晓荣 o.
带电粒子在匀强磁场中的运动 扬中市第二高级中学 田春林 2018年11月14日.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
5.1 相交线 (5.1.2 垂线).
正方形的性质.
第三章 图形的平移与旋转.
庞留根.
Presentation transcript:

物理思想方法与高考能力要求(八) 处理带电粒子在磁场中运动的临界极值思维方法 物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化.如光学中的“临界角”、超导现象中的“临界温度”、核反应中的“临界体积”、光电效应中的极限频率、静摩擦现象中的最大静摩擦力等,在中学物理中像这样的明确地指出的临界条件是容易理解和掌握的,但在高考试题中涉及的物理过程中常常是隐含着一个或几 个临界状态,需要考生通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,这对大多数考生来说是比较困难的.而带电粒子在有界磁场中运动的临界问题是历年高考理科综合命题中的热点.本节将结合这一问题,探讨一下如何确定它们的临界条件?其中主要有以下几种方法.

一、对称思想 带电粒子垂直射入磁场后,将做匀速圆周运动.分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ线间的夹角(也称为弦切角)相等,并有φ=α=2θ=ω·t,如右图所示.应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷.

【例1】如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负分别是(  )

解析:粒子穿过y轴正半轴,由左手定则可判断粒子带负电.根据带电粒子在有界磁场中运动的对称性作出粒子在磁场中运动轨迹如右图所示,由图中几何关系可得:r+rsin 30°=a, 答案:C

二、放缩法 带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示,(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大.可以发现这样的粒子源产生的粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP′上. 由此我们可得到一种确定临界条件的方法:在确定这类粒子运动的临界条件时,可以以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹,从而探索出临界条件,使问题迎刃而解,这种方法称为“放缩法”.

【例2】 如图所示,宽度为d的匀强有界磁场,磁感应强度为B,MM′和NN′是磁场左右的两条边界线.现有一质量为m,电荷量为q的带正电粒子沿图示方向垂直射入磁场中,θ=45°.要使粒子不能从右边界NN′射出,求粒子入射速率的最大值为多少?

解析:用放缩法作出带电粒子运动的轨迹如题图所示,当其运动轨迹与NN′边界线相切于P点时,这就是具有最大入射速率vmax的粒子的轨迹.由题图可知: R(1-cos 45°)=d,又Bqvmax= 联立可得:vmax= 答案:

三、平移法 带电粒子以一定速度沿任意方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径相同,若射入初速度为v0,则圆周运动半径为R=mv0/(qB),如图所示.同时可发现这样的粒子源的粒子射入磁场后,粒子在磁场中做匀速圆周运动,圆心在以入射点P为圆心、半径R=mv0/(qB)的圆(这个圆在下面的叙述中称为“轨迹圆心圆”)上. 由此我们也可以得到一种确定临界条件的方法:确定这类粒子在有界磁场中运动的临界条件时,可以将一半径为R=mv0/(qB)的圆沿着“轨迹圆心圆”平移,从而探索出临界条件,这种方法称为“平移法”.

【例3】如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0 【例3】如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16 cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速率都是v=3.0×106 m/s.已知α粒子的电荷量与质量之比 =5.0×107 C/kg,现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度.

解析:α粒子从S点垂直磁场以一定大小的速度朝各个方向射入,在磁场中均沿逆时针方向做匀速圆周运动,可求出它们的运动轨迹半径R,由qvB=m ,得R= ,代入数值得R=10 cm,可见2R>l>R. 由于朝不同方向发射的α粒子的圆轨迹都过S,可先考查速度沿负y方向的α粒子,其轨迹圆心在x轴上的A1点,将α粒子运动轨迹的圆心A1点开始,沿着“轨迹圆心圆”逆时针方向移动,如右图所示.由图可知,当轨迹圆的圆心移至A3点时,粒子运动轨迹与ab相交处P2到S的距离为2R,P2即为粒子打中ab上区域的右边最远点.由题中几何关系得:

当α粒子的轨迹的圆心由A3点移至A4点的过程中,粒子运动轨迹均会与ab相交,当移到A4点后将不再与ab相交了,这说明圆心位于A4点的轨迹圆,与ab相切的P1点为粒子打中区域的左边最远点.可过A4点作平行于ab的直线cd,再过A4作ab的垂线,它与ab的交点即为P1,同样由几何关系可知: NP1= . 则所求长度为P1P2=NP1+NP2,代入数值得P1P2=20 cm. 答案:20 cm