1.知识与技能 了解反证法是间接证明的一种基本方法;了解反证法的思考过程、特点. 2.过程与方法 感受逻辑证明在数学以及日常生活中的作用.

Slides:



Advertisements
Similar presentations
§3.4 空间直线的方程.
Advertisements

《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
四种命题 2 垂直.
常用逻辑用语复习 知识网络 常用逻辑用语 命题及其关系 简单的逻辑联结词 全称量词与存在量词 四种命题 充分条件与必要条件 量词 全称量词 存在量词 含有一个量词的否定 或 且 非或 并集 交集 补集 运算.
简易逻辑.
四种命题的相互关系.
1.1.2四种命题 1.1.3四种命题间的相互关系.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
常用逻辑用语复习课 李娟.
常用逻辑用语 1.1 命题及其关系 命题的相互关系.
命题 高中数学选修1-1 第一章 常用逻辑用语 主讲:刘小苗.
1.1.3 四种命题的相互关系.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
同学们好! 肖溪镇竹山小学校 张齐敏.
19.3 梯形(第1课时) 等腰梯形.
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
1.1特殊的平行四边形 1.1菱形.
2.1.2空间中直线与直线之间的位置关系 选自人教版高中数学必修2 第2.1.2节 第一课时 数科院084 陈麒羽.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
直线与平面垂直 吴县中学数学组 赵永.
直线与平面垂直 生活中的线面垂直现象: 旗杆与底面垂直.
2.3.1 直线与平面垂直的判定.
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
线段的有关计算.
正方形 ——计成保.
19.2 证明举例(2) —— 米 英.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
D B A C 菱形的判定 苏州学府中学 金鑫.
2.3.4 平面与平面垂直的性质.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
4.2 证明⑶.
3.3 垂径定理 第2课时 垂径定理的逆定理.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
直线和平面垂直的性质定理 (高中数学课件) 伯阳双语数学科组 张馥雅.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
抛物线的几何性质.
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
反证法.
13.3 等腰三角形 (第3课时).
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
§1.2.4 平面与平面的位置关系(一) 高三数学组 李 蕾.
空间平面与平面的 位置关系.
2.2直接证明(一) 分析法 综合法.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
直线的倾斜角与斜率.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
3.2 立体几何中的向量方法 3.2 . 1 直线的方向向量与平面的法向量 1.了解如何用向量把空间的点、直线、平面表示来出.
高中数学 选修2-2  2. 2.1 直接证明.
全等三角形的判定 海口十中 孙泽畴.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
1.2.2 充要条件 高二数学 选修 1-1 第一章 常用逻辑用语.
Presentation transcript:

1.知识与技能 了解反证法是间接证明的一种基本方法;了解反证法的思考过程、特点. 2.过程与方法 感受逻辑证明在数学以及日常生活中的作用.

本节重点:反证法概念的理解以及反证法的解题步骤. 本节难点:应用反证法解决问题. 用反证法证明问题,一般由证明p⇒q,转向证明¬q⇒r⇒…⇒t,t与假设矛盾或与某个真命题矛盾,从而到判断¬q为假,得出q为真.反证法,不是从已知条件去直接证明结论,而是先否定结论,在否定结论的基础上进行演绎推理,导出矛盾,从而肯定结论的真实性.

1.反证法证明数学命题的四个步骤 第一步:分清命题的条件和结论; 第二步:做出与命题结论相矛盾的假设; 第三步:由假设出发,应用演绎推理方法,推出矛盾的结果; 第四步:断定产生矛盾结果的原因,在于开始所做的假设不真,于是原结论成立,从而间接地证明了命题为真.

常见的主要矛盾有:(1)与数学公理、定理、公式、定义或已被证明了的结论相矛盾; (2)与假设矛盾; (3)与公认的简单事实矛盾.

2.反证法适宜证明存在性、唯一性、带有“至少有一个”或“至多有一个”等字样的一些数学问题. 3.用反证法证明不等式,常用的否定形式有:“≥”的反面为“<”;“≤”的反面为“>”;“>”的反面为“≤”;“<”的反面为“≥”;“≠”的反面为“=”;“=”的反面为“≠”或“>及<”. 4.反证法属于逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定了假设”.反证法属于“间接证明方法”,书写格式易错之处是“假设”错写成“设”.

1.反证法的定义 一般地,假设原命题不成立,经过 ,最后得出 ,因此说明假设 ,从而证明了原命题 ,这样的证明方法叫做反证法.反证法是 的一种基本方法. 2.反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与 矛盾,或与 矛盾,或与定义、公理、 、 矛盾等. 正确的推理 矛盾 错误 成立 间接证明 已知条件 假设 事实 定理

[例1] 求证:若两条平行直线a,b中的一条与平面α相交,则另一条也与平面α相交. [证明] 不妨设直线a与平面α相交,b与a平行,从而要证b也与平面α相交.假设b不与平面α相交,则必有下面两种情况:(1)b在平面α内.由a∥b,a⊄平面α,得a∥平面α,与题设矛盾.

(2)b∥平面α. 则平面α内有直线b′,使b∥b′. 而a∥b,故a∥b′,因为a⊄平面α,所以a∥平面α,这也与题设矛盾. 综上所述,b与平面α只能相交. [点评] 直接证明直线与平面相交比较困难,故可考虑用反证法,注意该命题的否定形式不止一种,需一一驳倒,才能推出命题结论正确.

已知p3+q3=2,求证p+q≤2. [证明] 假设p+q>2,那么p>2-q,所以p3>(2-q)3=8-12q+6q2-q3,将p3+q3=2代入消去p,得6q2-12q+6<0,即6(q-1)2<0.这与6(q-1)2≥0矛盾,故假设错误.所以p+q≤2.

[点评] 本题已知为p,q的三次幂,而结论中只有p,q的一次幂,若直接证明,应考虑到用立方根,同时用放缩法,但很难证,故考虑采用反证法.

[点评] 该命题中有“至少……”,直接方法很难证明,故可采用反证法. 类题解法揭示:当命题中出现“至少……”、“至多……”、“不都……”、“都不……”、“没有……”、“唯一”等指示性词语时,宜用反证法.注意“至少有一个”、“至多有一个”、“都是”的否定形式分别为“一个也没有”、“至少有两个”、“不都是”.

求证:一个三角形中,至少有一个内角不小于60°. [证明] 假设△ABC的三个内角A、B、C都小于60°, 即∠A<60°,∠B<60°,∠C<60°. 相加得∠A+∠B+∠C<180°. 这与三角形内角和定理矛盾,所以∠A、∠B、∠C都小于60°的假定不能成立,从而,一个三角形中,至少有一个内角不小于60°.

[例3] 已知:一点A和平面α. 求证:经过点A只能有一条直线和平面α垂直. [分析] 

[证明] 根据点A和平面α的位置关系,分两种情况证明.(1)如图,点A在平面α内,假设经过点A至少有平面α的两条垂线AB、AC,那么AB、AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于经过点A的一条直线ɑ. 因为AB⊥平面α,AC⊥平面α, a⊂α,所以AB⊥a,AC⊥a,在平面β内经过点A有两条直线都和直线a垂直,这与平面几何中经过直线上一点只能有已知直线的一条垂线相矛盾.

(2)如图,点A在平面α外,假设经过点A至少有平面α的两条垂线AB和AC(B、C为垂足)那么AB、AC是两条相交直线,它们确定一个平面β,平面β和平面α相交于直线BC,因为AB⊥平面α,AC⊥平面α,BC⊂α, ∴AB⊥BC,AC⊥BC 在平面β内经过点A有两条直线都和BC垂直,这与平面几何中经过直线外一点只能有已知直线的一条垂线相矛盾.综上,经过一点A只能有平面ɑ的一条垂线.

已知直线m与直线a和b分别交于A,B且a∥b, 求证:过a、b、m有且只有一个平面.

[证明] ∵a∥b, ∴过a、b有一个平面α. 又m∩α=A,m∩b=B,∴A∈a,B∈b, ∴A∈α,B∈α,又A∈m,B∈m,∴m⊂α. 即过a、b、m有一个平面α 假设过a、b、m还有一个平面β异于平面α. 则a⊂α,b⊂α,a⊂β,b⊂β这与a∥b,过a、b有且只有一个平面相矛盾.因此,过a、b、m有且只有一个平面.

[例4] 求证:当x2+bx+c2=0有两个不相等的非零实数根时,bc≠0. (1)若b=0,c=0,方程变为x2=0;x1=x2=0是方程x2+bx+c2=0的根,这与已知方程有两个不相等的实根矛盾. (2)若b=0,c≠0,方程变为x2+c2=0,但当c≠0时x2+c2≠0与x2+c2=0矛盾.

(3)若b≠0,c=0,方程变为x2+bx=0,方程的根为x1=0,x2=-b,这与已知条件:方程有两个非零实根矛盾.

一、选择题 1.“自然数a,b,c中恰有一个偶数”的否定为(  ) A.自然数a,b,c都是奇数 B.自然数a,b,c都是偶数 C.自然数a,b,c中至少有两个偶数 D.自然数a,b,c都是奇数或至少有两个偶数 [答案] D [解析] 恰有一个偶数的否定有两种情况,其一是无偶数,其二是至少有两个偶数.

[答案] C

3.命题“三角形中最多只有一个内角是直角”的结论的否定是 (  ) A.有两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角 [答案] C [解析] “最多”与“至少”互为否定,“一个”对应“两个”.

4.a+b>c+d的必要不充分条件是(  ) A.a>c          B.b>d C.a>c且b>d D.a>c或b>d [答案] D [解析] A,B是既不充分也不必要条件,C是充分不必要条件,只有D正确,可用反证法证明;若a>c或b>d不成立,则a≤c且b≤d,相加得,a+b≤c+d,与a+b>c+d矛盾,故条件是必要的.又取a=10,b=1,c=4,d=8知条件是不充分的.

二、填空题 5.有下列命题:①空间四点中有三点共线,则这四点必共面;②空间四点,其中任何三点不共线,则这四点不共面;③垂直于同一直线的两直线平行;④两组对边相等的四边形是平行四边形.其中真命题是________. [答案] ① 6.和两条异面直线AB、CD都相交的两条直线AC、BD的位置关系是________. [答案] 异面

三、解答题 7.如图所示,在△ABC中,AB>AC,AD为BC边上的高,AM是BC边上的中线,求证:点M不在线段CD上. [证明] 假设点M在线段CD上,则BD<BM=CM<CD,且AB2=BD2+AD2,AC2=AD2+CD2,所以AB2=BD2+AD2<BM2+AD2<CD2+AD2=AC2,即AB2<AC2,AB<AC.这与AB>AC矛盾,故假设错误.所以点M不在线段CD上.