第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法.

Slides:



Advertisements
Similar presentations
平面向量.
Advertisements

精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
第6章 多元函数微积分 6.1空间解析几何简介. 6.2多元函数微分学. 6.3多元函数积分学..
高等数学II 课程网页: 答疑时间:(周一10:00-12:00三教三楼答疑室)
第七章 空间解析几何与向量代数 用代数的方法研究几何问题称为解析几何 平面解析几何 一元微积分 空间解析几何 多元微积分 本章的主要内容 :
空间解析几何 湖南大学 数学与计量经济学院.
第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积;
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第七章 向量代数与空间解析几何 如同平面解析几何那样,空间解析几何是通过建立空间直角坐标,把空间的点与三元有序数组对应起来,用三元方程及方程组来表示空间几何图形,从而可以用代数的方法来研究空间几何问题,而这又是学习微积分的基础。 §1 向量及其线性运算 一.向量的概念 1.数量与向量:仅有数值大小的物理量称数量或标量,如温度、时间等。不仅有大小,还有方向的量称向量或矢量,如力、速度等。
空间解析几何与向量代数 第一节 向量及其线性运算 第二节 数量积 向量积 *混合积 第三节 曲面及其方程 第四节 空间曲线及其方程
第七章 向量与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的点积与叉积 第三节 平面与直线 结束.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
第三章 空间解析几何 与向量代数.
平面向量复习建议.
3.4 空间直线的方程.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
第9章 向量与空间解析几何 9.1 空间直角坐标系与向量的概念 9.2 向量的数量积与向量积 9.3 平面方程与空间直线方程
空间直角坐标系 这一章,我们为学习多元函数微积分学作准备,介绍空间解析几何和向量代数。这是两部分相互关联的内容。用代数的方法研究空间图形就是空间解析几何,它是平面解析几何的推广。向量代数则是研究空间解析几何的有力工具。这部分内容在自然科学和工程技术领域中有着十分广泛的应用,同时也是一种很重要的数学工具。
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
第七章 空间解析几何 §3 向量的乘法 一、两向量的数量积 二、两向量的向量积 三、向量的混合积.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
同学们好! 肖溪镇竹山小学校 张齐敏.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
复习: 什么叫做锐角三角函数(即直角三角形中的三角函数)? 以锐角为自变量,以比值为函数值的函数叫做锐角三角函数。
1.1特殊的平行四边形 1.1菱形.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
工业机器人技术基础及应用 主讲人:顾老师
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
空间向量的数量积运算.
实数与向量的积.
2.6 直角三角形(二).
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
胜利油田一中 杨芳.
3.3 垂径定理 第2课时 垂径定理的逆定理.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
复习.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.5空间向量运算的 坐标表示.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
13.3 等腰三角形 (第3课时).
平面向量基本定理.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
2.2矩阵的代数运算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
§2 方阵的特征值与特征向量.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
直线的倾斜角与斜率.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
空间直角坐标系.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.2 平面向量基本定理.
制作者:王翠艳 李晓荣 o.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法

一、向量的概念 如力、位移、速度、加速度等. 既有大小又有方向的量, 这类量称为向量, 或称为矢量. 模等于 1 的向量称为单位向量.              如力、位移、速度、加速度等.   既有大小又有方向的量, 这类量称为向量, 或称为矢量.                     模等于 1 的向量称为单位向量. 向量 a 的大小称为该向量的模, 记作 | a |; 与 a 同向的单位向量记为 a ,  记为 0 ,其方向不定. 模等于 0 的向量称为零向量, 如果方向相同、模相等, 两个向量 a 与 b 不论起点是否一致, 即经平行移动后,两向量完全重合. 则它们是相等的, 记为 a = b . 允许自由移动的向量称为自由向量.

以 a 、b 为边的平行四边形的对角线所表示的向量如左图, 定义 1 设有两个非零向量 a 、b , 这就是向量加法的平行四边形法则. 记为 a + b, 则由 a 的起点到 b 的终点的向量. 若以向量 a 的终点作为向量 b 的起点, 也是 a 与 b 的和向量. 这是向量加法的三角形法则. 这个法则可以推广到任意有限个向量相加的情形. a b c a+b b+c (a+b)+c=a+(b+c) a b a+b b a

从图中可以看出:向量的加法满足交换律和结合律. 即 a + b = b + a (a + b ) + c = a + (b + c). 若向量 b 加向量 c 等于向量 a , 根据向量加法的三角形法则, 则称向量 c 为 a 与 b 之差, 记为 c = a - b . b c = a  b a

 是一个非零实数, 定义 2 设 a 是一个非零向量, 则 a 与  的乘积仍是一个向量, 记作 a , 且 ( 1 ) | a | = |  | | a |; 与 a 同向,当  > 0, 与 a 反向,当  < 0, ( 2 ) a 的方向 如果  = 0 或 a = 0, 规定 a = 0. 数乘向量满足结合律与分配律,即 (a ) = (  ) a ,  ( a + b ) = a + b , (  +  ) a = a +  b , 其中 , 是数量.

设 a 是非零向量, 由数乘向量的定义可知, 向量 的模等于 1 , 且与 a 同方向, 所以有 因此任一非零向量 a 都可以表示为

二、向量的坐标表示法 与x 轴、y 轴、z 轴的正向同向的单位向量分别记为 i、 j、k, 在空间直角坐标系中, 称为基本单位向量. 终点为 P(x, y, z). 设向量 a 的起点在坐标原点 O, 过 a 的终点 P(x, y, z)作三个平面分别垂直于三条坐标轴, 则点 A 在 x 轴上的坐标为 x , 设垂足依次为 A, B ,C, 根据向量与数的乘法运算得向量 , i x OA =

称 a = xi + yj + zk 为向量 a 的坐标表达式, 记作 于是, 由向量的三角形法则, 有 称 a = xi + yj + zk 为向量 a 的坐标表达式, 记作 其中 x,y,z 称为向量 a 的坐标. z C 向量的坐标表示法 P a k B j i y O A x Q

已知 是以 A( x1, y1, z1 )为起点, 例 1 求向量 a 的坐标表达式. B(x2, y2 , z2)为终点的向量, 解 A O x

设 则 ( 为数量). 或

例 2 已知 a = { 2 , - 1 , - 3 }, b = { 2 , 1 , - 4 } , 求 a + b , a - b , 3a - 2b . 解 a + b a - b 3a - 2b

O 那么它的终点坐标 A 的坐标就是(ax , ay , az). a 的起点放在坐标原点, 由两点间距离公式可知 z R A b Q a  b O Q a y P x

  非零向量 a 与三坐标轴正向的夹角  、 、 (其中0 ≤ ≤  , 0 ≤  ≤  , 0 ≤  ≤ ),称为向量  的方向角; 这三个角的余弦 cos 、cos 、cos  称为向量a 的方向余弦. 因为△OPA、△ORA 都是直角三角形,所以

例 3 已知 M1 ( 1 , -2 , 3 )、M2 ( 4 , 2 , -1 ), 求 的模及方向余弦. 解 由条件可得

例 4 设向量 a 的两个方向余弦为 求向量 a 的坐标. 可知 解 因为

因此 所以  =2 , 4 , 4 或  =2 , 4 ,-4 .

例 5 已知作用于一质点的三个力为 F1 = i-2k , 求其合力F 的大小及方向角. F2 = 2i- 3j + 4k , F3 = j + k , 解 因为 F = F1 + F2 + F3 所以,可得

查表可得 合力的三个方向角为 因此,合力大小的近似值为 4.7 个单位,