3.2 简单的三角恒等变换 接3.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二节 换元积分法 一、第一类换元积分 法(凑微分法) 二、第二类换元积分法. 问题 解决方法 利用复合函数,设置中间变量. 过程令 一、第一类换元积分法(凑微分法)
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
首页 全国高等学校招生考试统一考试 监考员培训 广州市招生考试委员会办公室.
人口增长.
第一章 会计法律制度 补充要点.
二、个性教育.
知识结构 三角函数.
第二章 二次函数 第二节 结识抛物线
第三章 三角函数与解三角形 第三节 两角和与差及二倍角 三角函数公式.
§3.1  两角和与差的三角函数 一、素质教育目标 (一)知识教学点 1.两角和与差的正弦. 2.两角和与差的余弦. 3.两角和与差的正切.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
余角、补角.
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
课前探究: 给定一个角 , 角 的终边与角 的终边有什么关系?它们的三角函数之间有什么关系?
二.换元积分法 ò ( ) (一)第一类换元积分法 1.基本公式 把3x当作u,“d”后面凑成u 2.凑微分 调整系数 (1)凑系数 C x
7.1 複角公式.
正、余弦定理的应用 主讲人:贾国富.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
解直角三角形复习课 (一) A B b a c ┏ C.
3.1 两角和与差的正弦、余弦 和正切公式 两角差的余弦公式.
28.1 锐角三角函数(2) ——余弦、正切.
计算.
6.4不等式的解法举例(1) 2019年4月17日星期三.
实数与向量的积.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
1.5 函数y=Asin(ωx+φ)的图象.
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
一个直角三角形的成长经历.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
人教版高一数学上学期 第一章第四节 绝对值不等式的解法(2)
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
一元二次不等式解法(1).
高中数学必修四 第一章 1.4.2正弦函数余弦函数的性质(2).
课题 三角函数复习课.
3.4圆周角(一).
2.2直接证明(一) 分析法 综合法.
高中数学选修 导数的计算.
三角函数 内蒙古五原一中 党国强 复 习 课.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
扇形的认识 人教版小学数学义务教育第十一册第四单元.
4.7 二倍角的正弦、 余弦、正切.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
1-4 和角公式與差角公式 差角公式與和角公式 1 倍角公式 2 半角公式 和角公式與差角公式 page.1/23.
人教版必修4《三角函数》 教材分析与教学建议
24.4弧长和扇形面积 圆锥的侧面积和全面积.
锐角三角函数(1) ——正 弦.
****九年级数学组汇报教学 课题:§ 锐角三角函数 授课教师: 授课班级:九○三班.
高中数学 选修2-2  2. 2.1 直接证明.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
1.4.1正弦函数、余弦函数的图象.
3.1.2 两角和与差的正弦、 余弦、正切公式.
1.4.1正弦函数、余弦函数的图象.
* 07/16/ 天津市第七十四中学 李家利 *.
4.2 同角三角函数的基本关系 及诱导公式.
Presentation transcript:

3.2 简单的三角恒等变换 接3

一.教学目标 通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二.教学重点与难点 教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.

cos(α-β)=___________________ cos(α+β)=___________________ 一.复习十一个公式: cosαcosβ+sinαsinβ cos(α-β)=___________________ (C(α-β)) cos(α+β)=___________________ (C(α+β)) cosαcosβ-sinαsinβ sin(α+β)=___________________ (s(α+β)) sinαcosβ+cosαsinβ sinαcosβ-cosαsinβ sin(α-β)=____________________ (s(α-β)) (T(α+β)) (T(α-β))

2sinαcosα sin2α=____________ (S2α) cos2α- sin2α cos2α=____________ (C2α) cos2α=____________ 2cos2α- 1 1- 2sin2α cos2α=____________ (T2α)

二.例题训练: 半角公式

思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.

例2:求证: 思考:在例2证明中用到哪些数学思想? 例2证明中用到换元思想和方程思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式. 练一练:课本P155—156页1~3。

例3:求证:3+cos4α- 4cos2α=8sin4α. 降幂 升幂 例3:求证:3+cos4α- 4cos2α=8sin4α. 例4:化简: 2sinx(sinx+cosx).

小结 本节课我们通过推导半角公式和积化和差、和差化积公式(不要求记忆)体会了十一个公式的应用,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用. 作业: 课本P156页A组T1、T2.

例5:求函数y=sinx+ cosx的周期,最大值和最小值. 练一练:课本P156页T4. 例6:(课本P160页T9) 已知函数y=(sinx+cosx)2+2cos2x. (1)求它的递减区间; (2)求它的最大值和最小值.

例7:(P157页B组T6)(1)求函数y=3sinx+4cosx的最大值与最小值. (2)你能用a,b表示函数y=asinx+bcosx的最大值和最小值吗? 注意:x∈R 规律: 从而y=asinx+bcosx的最大值为 y=asinx+bcosx的最小值为

小结 本节课通过三角变换,我们把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化,这个过程中蕴涵了化归思想.

作业: 课本P157页A组T5. P160页A组T10、T11、T12. 选做题:P160页B组T6.

例8:如图,已知OPQ是半径为1,圆心角为60°的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形 例8:如图,已知OPQ是半径为1,圆心角为60°的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,求当α取何值时,矩形ABCD的面积最大?并求出这个最大面积. 分析:在求当α取何值时,矩形ABCD的面积S最大 ,可分二步进行: (1)找出S与α之间的函数关系; (2)由得出的函数关系,求S的最大值.

点评:求角的思路与方法: (1)求这个角的某个三角函数值; (2)确定这个角的范围。

作业: 1.课本P160页A组T13. 2.课本P160页B组T7. 补充题: