3.3.2 两点间的距离 山东省临沂第一中学.

Slides:



Advertisements
Similar presentations
成功八步 成功一定有方法 失败一定有原因 银河系统.
Advertisements

必修2 第一单元 古代中国经济的基本结构和特点
精品课程《解析几何》 第三章 平面与空间直线.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
一元二次方程(复习课1) 弘文中学九年级 陈锡文.
平行四边形的判定 新海实验中学苍梧校区 王欣.
跳楼价 亏本大甩卖 清仓处理 买一送一 5折酬宾. 跳楼价 亏本大甩卖 清仓处理 买一送一 5折酬宾.
第三单元 发展社会主义民主政治.
3.3 资源的跨区域调配 ——以南水北调为例 铜山中学 李启强.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
勾股定理 说课人:钱丹.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
第十八章 平行四边形 平行四边形的性质(1).
北师大版数学 《旋转》系列微课 主讲:胡 选 单位:深圳市坪山新区光祖中学.
同学们好! 肖溪镇竹山小学校 张齐敏.
平行四边形的判别.
人教版数学四年级(下) 乘法分配律 单击页面即可演示.
平行四边形判定(3) 三角形的中位线 A B C D E.
12.3 角的平分线的性质 (第2课时).
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
双曲线的简单几何性质 杏坛中学 高二数学备课组.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
知识回顾: 1. 平行四边形具有哪些性质? 平行四边形的性质: 1、边:平行四边形对边平行且相等。 2、角:平行四边形对角相等,邻角互补。
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
3.1.4 三角形的中位线 授课人 曾剑英 课件制作曾剑英.
实数与向量的积.
线段的有关计算.
§ 矩形的定义、性质 矩形 本资料来自于资源最齐全的21世纪教育网
正方形 ——计成保.
2.6 直角三角形(二).
D B A C 菱形的判定 苏州学府中学 金鑫.
八年级期中数学试卷 学年下学期.
八年级上册1.1-1.3复习之 三角形中线的应用.
6.2菱形(2).
三角形的中位线.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
3.3 垂径定理 第2课时 垂径定理的逆定理.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
9.5 三角形的中位线.
2.6 直角三角形(1).
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
岱山实验学校欢迎你 岱山实验学校 虞晓君.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
九年级数学(上) 第一章 特殊平行四边形 2.正方形的性质与判定—判定.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
18.2 特殊的平行四边形 矩形(1).
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
9.1.2不等式的性质 周村实验中学 许伟伟.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
高中数学必修 平面向量的基本定理.
直线的倾斜角与斜率.
第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法.
§19.1平行四边形(5) 三角形中位线 辽宁省鞍山市市第42中学 栾晓娜.
锐角三角函数(1) ——正 弦.
矩形 有一个角是直角的平行四边形 灵宝市川口一中南肖丽.
19.2 特殊的平行四边形 矩形.
H a S = a h.
正方形的性质.
Presentation transcript:

3.3.2 两点间的距离 山东省临沂第一中学

问题: AO的长怎样求? AC的长怎样求? 已知点A(-1,3),O(0,0),B(3,-1) C(2,2),试问:四边形AOBC是什么四边形? 答:AO//BC,OB//AC,四边形AOBC是平行四边形。 x o y 或AO=AC,得四边形AOBC是菱形 AO的长怎样求? AC的长怎样求? 如果把问题一般化就有如下问题:

问题: 试求:两点间的距离 已知:    和 , 1)、y1=y2 2)、x1=x2 x o y x o y

构建数学: x o y 两点 间的距离

例1: 已知 的顶点坐标为A(-1,5),B(-2,-1), C(4,7), (1)求BC边的长 ; (2)求BC边上的中线AM的长; 一般地,三角形的顶点为A(x1,y1),B(x2,y2), C(x3,y3), 三角形的重心是M(x0,y0),则 :

例2 证明直角三角形斜边的中点到三个顶点的距离相等。 y x o B C A (0,b) M (0,0) (a,0)

y x o 例3、证明平行四边形四条边的平方和等于两条对角线的平方和。 (a+b,c) (b,c) A B D C (0,0) (a,0) 分析:首先要建立适当的直角坐标系,用坐标表示有关量,然后进行代数运算,最后把代数运算的结果“翻译”成几何关系。 (0,0) (a,0) 总结:1、进一步熟练掌握两点间距离公式 2、你能通过例4总结用解析法进行证明的步骤吗? 3、在例4中,你是否还有其他建立坐标系的方法吗? 4、你怎么理解建立适当的坐标系?

再见