§1.9  直线和平面垂直的判定与性质 教学目的 1.进一步理解直线与平面垂直定义的两种用法; 2.理解并掌握直线与平面垂直的判定定理2;

Slides:



Advertisements
Similar presentations
精品课程《解析几何》 第三章 平面与空间直线.
Advertisements

§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
云南省丽江市古城区福慧学校 执教者 :和兆星.
直线与圆的位置关系 市一中 九年级数学组.
余角、补角.
第8课时 直线和圆的 位置关系(2).
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
第一章 证明(二) 第三节 线段的垂直平分线(一) 河南郑州第八中学 刘正峰
1.5 三角形全等的判定(4).
同学们好! 肖溪镇竹山小学校 张齐敏.
9.4两个平面平行.
 做一做   阅读思考 .
12.3 角的平分线的性质 (第2课时).
9.7 直线和平面所成的角与二面角 1. 平 面 的 斜 线 和 平 面 所 成 的 角 X.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
15.2线段的垂直平分线 六安皋城中学:付军. 15.2线段的垂直平分线 六安皋城中学:付军.
2.1 空间点、直线、平面之间的位置关系.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
直线与平面垂直 吴县中学数学组 赵永.
直线与平面垂直 生活中的线面垂直现象: 旗杆与底面垂直.
2.3.1 直线与平面垂直的判定.
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
线段的有关计算.
正方形 ——计成保.
19.2 证明举例(2) —— 米 英.
2.3等腰三角形的性质定理 1.
2.2 直线、平面平行的 判定及性质 贵阳一中 严虹.
2.6 直角三角形(二).
2.2.1 直线与平面平行的判定 图们市第一高级中学 数学组 南善花.
2.3.4 平面与平面垂直的性质.
第三章 直线与平面、 平面 与平面的相对位置 内 容 提 要 §3-1 直线与平面平行 • 平面与平面平行
3.4 圆心角(1).
10.3平行线的性质 合肥38中学 甄元对.
平行线的性质 1.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
直线和平面垂直的性质定理 (高中数学课件) 伯阳双语数学科组 张馥雅.
第三单元:角的度量 线段 直线 射线 北京市东城区府学胡同小学 胡益萌.
夹角 曾伟波 江门江海中学.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
《工程制图基础》 第四讲 几何元素间的相对位置.
第五章 相交线与平行线 平行线的判定 (第2课时)
第十二章 全等三角形 角平分线的性质 (第2课时)
13.3 等腰三角形 (第3课时).
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
§1.2.4 平面与平面的位置关系(一) 高三数学组 李 蕾.
空间平面与平面的 位置关系.
《工程制图基础》 第五讲 投影变换.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
直线的倾斜角与斜率.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
2.3.1直线与平面垂直的判定(一).
9.9空间距离.
3.2 立体几何中的向量方法 3.2 . 1 直线的方向向量与平面的法向量 1.了解如何用向量把空间的点、直线、平面表示来出.
1.4.1正弦函数、余弦函数的图象.
位似.
9.3-2直线与平面垂直.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
§2.3.2 平面与平面垂直的判定.
Presentation transcript:

§1.9  直线和平面垂直的判定与性质 教学目的 1.进一步理解直线与平面垂直定义的两种用法; 2.理解并掌握直线与平面垂直的判定定理2; 3.理解并掌握直线与平面垂直的性质定理. 教学重点和难点 这节课的重点是使学生进一步理解、掌握直线和平面垂直的定义和判定定理.这节课的难点是直线和平面垂直的性质定理的证明. 教学设计过程 一、复习,讲练上节课所留的作业 师:先请一位同学讲他所做的第32页习题四中的第1题.(教师写出已知、求证并画出直观图)

已知:△ABC,l⊥AB,l⊥AC.(如图1) 求证:l⊥BC. 生:因为l⊥AB,l⊥AC, 所以  l⊥平面ABC.(线面垂直的判定定理) 故  l⊥BC.(线面垂直的定义) 师:对,在上一节我们讲直线和平面垂直的定义时,就强调过在立体几何中这是一个很重要的定义,我们一定要很好地理解、应用.线面垂直的定义既是线面垂直最基本的判定方法,在线面垂直判定定理的证明思路就是回到定义去.关于这一应用在上节课中已经做了详细的说明.线面垂直的定义又是线面垂直的最基本的性质,当我们知道直线和平面垂直后,这平面的垂线就和平面内任何一直线都垂直,所以应用线面垂直的定义是证明两直线垂直常用的方法之一.

师:现在我们来看第32页习题四的第2题.请一个同学回答.(写出已知、求证和根据已知条件而画的直观图,我们叫它为起始图) 已知:直线a∥平面α,直线b⊥平面α.(如图2(1)) 求证:b⊥a. 生:过a作平面β,设β∩α=c,因为a∥α,所以a∥c.(线面平行的性质定理) 又因为b⊥α,因此b⊥c,故b⊥a. 师:我们怎样想到要过a作平面β的呢? 生:这是线面平行的性质定理的要求.因为在线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.在图中没有这条交线,所以我们就要作平面β∩α=c,作出这条交线,以满足定理的要求a平行交线c.

师:这是定理要求我们作辅助面.在立体几何解题过程中,我们经常要作辅助线、辅助面,我们根据什么原则来作辅助线、辅助面呢?有两条原则:一是用概念来指导作图,这在求异面直线所成的角时,我们曾反复强调;二是用定理来指导作图.这就是今天我们在证明这个题时要明确的.这是在立体几何中作辅助线、辅助面的两条基本原则,遵循这两条原则就说明解题的思路是正确的,就使解题的正确性有了基本的保证;反之,如果违背了这两条原则,那就说明了第一步就走错了方向.这一题肯定不可能做对.所以作辅助线、辅助面这两条原则我们一定要理解、记住,并且在解题过程中应用.当然,以后随着课程内容不断的展开,我们还会反复强调这两条原则. 以前我们还讲过要使直观图有好的视觉效果,还要注意视角的选择,这一题的起始图(根据已知条件所画出的直观图)看起来它的视觉效果并不好,但当我们证完这道题,看到它的终止图(解完题后的直观图)视觉效果就比较好,所以视角选择好与不好要以终止图的视觉效果好与不好为标准.这样在解完一道题后,有时要重新设计起始图的画法,以保证终止图有最好的视觉效果.

二、直线与平面垂直的判定定理2. 师:这是课本第25页的例1,我们把它正式升格为判定定理2.我们来看下面的模型就很容易了解定理的内容.(这时拿出两根小棍平行地放在课桌面上,并使其中一根与桌面垂直,让学生观察另一根与桌面的关系)a∥b,如果a⊥平面α,那么b与平面α是什么关系? 生:b也垂直平面α. 师:这就是线面垂直的判定定理2. 判定定理2  如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面. 已知:a∥b,a⊥α.(如图3) 求证:b⊥α. 师:判定定理1、判定定理2,这里的1,2不是人为的排列,而是有它内在的逻辑关系,也就是说我们可以应用判定定理1来证明判定定理2,那么我们如何用判定定理1来证明判定定理2呢?

生:为了用判定定理1,我们可以首先在平面α内作两条相交直线m,n. 因为  a⊥α, 所以  a⊥m,a⊥n.(线面垂直的定义) 又因为  a∥b, 所以  b⊥m,b⊥n.(一条直线垂直于平行线中的一条也就垂直于另一条) 故  b⊥α.(线面垂直的判定定理1) 三、直线和平面垂直的性质定理 师:现在我们来研究直线和平面垂直的性质定理,先来看模型.(这时教师用两根小棍都垂直于桌面,让学生观察、回答) 生:这两直线平行. 师:这就是直线和平面垂直的性质定理. 直线和平面垂直的性质定理  如果两条直线同垂直于一个平面,那么这两条直线平行.

已知:a⊥平面α,(如图4)b⊥平面α, 求证:a∥b. 师:我们讲过了线面垂直的判定定理1、2.也曾经在讲线面垂直的定义时,把课本中的两句话(第24页)升格为两个定理,即: 定理  过一点有且只有一条直线和一个平面垂直. 定理  过一点有且只有一个平面和一条直线垂直. 现在可以根据上述定理来证明线面垂直的性质定理:

四、两个定义 1.点到平面的距离  从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (教师可先用一根小棍垂直于桌面演示,然后给点到平面的距离下定义,下完定义后可指出,点到平面的距离可转化为两点间的距离,即这个点和垂足之间的距离) 2.平行的直线和平面的距离  一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离. (教师可先用一根小棍和平面平行,演示让学生观察,如何给平行的直线和平面的距离下定义,定义给出后,教师可指出平行的直线和平面的距离可能转化为点到平面的距离,当然也就可转化为两点间的距离) 师:在这定义中,是这条直线上任意一点到平面的距离叫做这条直线和平面的距离,那会不会因在直线上所取的点不同,而使距离不同呢? 生:不会,它们之间的距离都相等. 师:对,但为了在理论上说明这个定义的合理性,我们来看下面这个例题.

例  已知:l∥平面α,A∈l,B∈l,AA′⊥α于A′,BB′⊥α于B′.(如图5) 生:因为AA′⊥α,BB′⊥α,所以AA′∥BB′(性质定理),所以过AA′,BB′作平面β,设β∩α=A′B′,因为l∥α,所以l∥A′B′,故AA′=BB′.(平行线间的距离处处相等) 师:通过这个例题的证明,我们就了解了定义的合理性.可以在直线上任意取点.这对于以后我们求平行的直线和平面的距离,提供了很好的思路. 今天我们讲了直线和平面垂直的第2个判定定理,讲了直线和平面垂直的性质定理,在这个基础上还讲了点到平面的距离、平行的直线和平面的距离两个定义. 作业 课本第32页习题四第3,5,8题.