22.3实际问题与一元二次方程(一).

Slides:



Advertisements
Similar presentations
星期日星期一星期二星期三星期四星期五星期六 a a+1 a+2 a-1 a+1 a a a-1 a-2.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
北师大版四年级数学下册 天平游戏(二).
北师大版八年级数学(上册) 第七章 二元一次方程组 第二节 二元一次方程组的解法 第一课时 用代入法解二元一次方程组.
两位数乘两位数 (进位)乘法 四 乘法(第二课时).
代数方程总复习 五十四中学 苗 伟.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
12.8 简单的二元 二次方程(一).
复习 1 什么是二元一次方程,什么是二元一次方程组. 2什么是二元一次方程的解. 3什么是二元一次方程组的解.
8.2消元 解二元一次方程组(1) 点击页面即可演示.
22.3实际问题与一元二次方程(一).
18.2一元二次方程的解法 (公式法).
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
第八章二元一次方程组复习
22.3实际问题与一元二次方程 探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 吉水三中王鹏.
圆复习.
第二十一章 代数方程 复习课(一).
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
22.3 实际问题与一元二次方程(1).
3-1 因式分解解一元二次方程式 第三章 一元二次方程式 主題 單元目標: 1.由生活情境中認識一元二 次方程式的意義。
第三章 一元一次方程 3.3解一元一次方程 3.3.去括号(1).
10.2 立方根.
15.2 分式的运算 分式的乘除 第1课时 第十五章 分式 案例作者:浙江省衢州兴华中学 刘 芳
第二课时 求一个数的几分之几是多少的两步应用题
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
实际问题与一元二次方程(二).
实际问题与一元二次方程(二).
北师大版二年级数学上册 儿童乐园 王秀梅.
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几何 猜想答案 x+y=35 ① 2x+4y=94 ② 你能解决这个有趣的鸡兔同笼问题吗?
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
国标第十二册 第一单元*第九课时 列方程解稍复杂的百分数实际问题(3).
余角、补角.
分数除法应用题(一) 已知一个数的几分之几是多少,求这个数。.
3.1 从算式到方程.
解决问题 求比一个数多(或少)百分之几的数是多少 市桥陈涌小学 吴秀堎.
第八章 二元一次方程组 8.1 二元一次方程组 8.2 消元 ——二元一次方程组的解法 8.3 实际问题与二元一次方程组
加减法解二元一次方程组 肇庆市睦岗镇大龙学校 彭素冉.
方程与不等式专题复习 专题二 一元二次方程.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
第七单元 小数的初步认识 简单的小数加、减法 安徽省黄山市黟县碧阳小学 叶群芳.
绿色圃中小学教育网 比例 比例的意义 绿色圃中小学教育网
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
计算.
6.4不等式的解法举例(1) 2019年4月17日星期三.
实数与向量的积.
线段的有关计算.
北师大版数学九年级(上) 2.1 认识一元二次方程(1)
第四章 一次函数 4. 一次函数的应用(第1课时).
用计算器开方.
八年级 下册 16.1 二次根式(2) 湖北省通山县教育局教研室 袁观六.
解 简 易 方 程.
人教版小学数学三年级上册 认识几分之几 gjq.
第4课时 绝对值.
一元二次不等式解法(1).
小数的加法和减法 小数加、减计算 (例2).
高中数学选修 导数的计算.
两位数加一位数和整十数 (不进位) 翠屏小学 张兴权.
加减消元法 授课人:谢韩英.
第二章 一元二次方程 2.4 用因式分解求解一元二次方程法(1).
2.3 用公式法求解一元二次方程.
3.4 角的比较.
解下列各一元二次方程式: (1)(x+1)2=81 x+1=9 或 x+1=-9 x=8 或 x=-10 (2)(x-5)2+3=0
以下是一元一次方程式的有________________________________。
8、9的认识 一年级组 李 晶.
一元一次方程的解法(-).
第八单元:20以内的进位加法 8 、7 、6加几 北京市宣武师范学校附属第一小学 冉 梅.
第八单元 20以内的进位加法 5、4、3、2加几 练习课 北京小学 杨 燕.
Presentation transcript:

22.3实际问题与一元二次方程(一)

复习回顾: 一、解一元二次方程有哪些方法? 复习回顾: 一、解一元二次方程有哪些方法? 直接开平方法、 配方法、 公式法、 因式分解法.

二、解一元一次方程应用题的一般步骤? 第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数; 第二步:找出能够表示应用题全部含义的相等关系; 第三步:根据这些相等关系列出需要的代数式(简称关系式)从而列出方程; 第四步:解这个方程,求出未知数的值; 第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名称)。

10 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 探究1: 分析 通过对这个问题的 探究,你对类似的传播 问题中的数量关系有 新的认识吗? 探究1: 分析 设每轮传染中平均一个人传染了x个人. 第一轮传染后 第二轮传染后 1+x 1 1+x+x(1+x) 开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有_____人患了流感;第二轮传染中,这些人中的每个人又传染了x个人, 用代数式表示,第二轮后共有____________人患了流感. (x+1) 1+x+x(1+x) 1+x+x(1+x)=121 解方程,得 10 -12 (不合题意,舍去) 10 答:平均一个人传染了________个人.

如果按照这样的传染速度, 三轮传染后有多少人患流感? 121+121×10=1331人 你能快速写出吗?

总结用一元二次方程解应用题的一般步骤 (1)审题,分析题意,找出已知量和未知量,弄清它们之间的数量关系; (2)设未知数,一般采取直接设法,有的要间接设; (3)寻找数量关系,列出方程,要注意方程两边 的数量相等,方程两边的代数式的单位相同; (4)选择合适的方法解方程; (5)检验 因为一元二次方程的解有可能不符合题意,如:线段的长度不能为负数,降低率不能大于100%.因此,解出方程的根后,一定要进行检验 (6)写出答语.

探究2 两年前生产 1吨甲种药品的成本是5000元,生产1吨 乙种药品的成本是6000元,随着生产技术的进步, 现在生产 1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大? 分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元) 乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元) 乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数)

解:设甲种药品成本的年平均下降率为x,则一年后 解方程,得 答:甲种药品成本的年平均下降率约为22.5%. 算一算:乙种药品成本的年平均下降率是多少? 22.5% 比较:两种药品成本的年平均下降率 (相同)

经过计算,你能得出什么结论?成本下降额 较大的药品,它的成本下降率一定也较大 吗 ?应怎样全面地比较对象的变化状况? 经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.

若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为 小结 类似地 ,这种增长率的问题在实际 生活普遍存在,有一定的模式 若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为 其中增长取+,降低取-

解:设平均每年增长的百分率为x,根据题意得: 例题1:雪融超市今年的营业额为280万元,计划后年的营业额为403.2万元,求平均每年增长的百分率? 分析:今年到后年间隔2年, 今年的营业额×(1+平均增长率) =后年的营业额。 解:设平均每年增长的百分率为x,根据题意得: 1+x=±1.2 舍去 答:平均每年的增长率为20%

例题2:甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感? 分析:第一天人数+第二天人数=9, 解:设每天平均一个人传染了x人, 既 解得: (舍去) 或 答:每天平均一个人传染了2人,这个地区一共将会有2187人患甲型流感

课堂练习 某农户的粮食产量,平均每年的增长率为x, 第一年的产量为6万kg,则 1、第二年的产量为 2、第三年的产量为 3、三年的总产量为 6+ 6(1+x)+ 6 (1+x)2 kg

课堂练习: B 1.某厂今年一月份的总产量为500吨,三月份的总产量为720吨,平均每月的增长率是x,列方程为( ) A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=500 B

课堂练习: 2.2005年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是( ) 100(1+x)2=250 100(1+x)+100(1+x)2=250 100(1-x2)=250 D.100(1+x)2 B

课堂练习 某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为 .

课堂练习:某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次,设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是_ _ _ _ _ _ _ _ 分析:本题中的相等关系为第一年培训人数+第二年培训人数+第三年培训人数=95万。 解: 整理得: 即 舍去 答:每年接受科技培训的人次的平均增长率为50%

小结 1、平均增长(降低)率公式 2、注意: (1)1与x的位置不要调换 (2)解这类问题列出的方程一般 用 直接开平方法 学无止境 用 直接开平方法 学无止境 迎难而上

一节课下来,我们结识了很多新知识,也有了很多的新想法。你能谈谈自己的收获吗?说一说,让大家一起来分享。

作业: 数学书48页 习题22.3:第2、4、6、7题