【你一定记住这些话!】 1.今天能做的事绝不拖到明天 2.自己能做的事绝不麻烦别人 解排列、组合的策略 苏教版选修2-3 姓名:YZJ

Slides:



Advertisements
Similar presentations
1 、谁能说说什么是因数? 在整数范围内( 0 除外),如果甲数 能被乙数整除,我们就说甲数是乙数的 倍数,乙数是甲数的因数。 如: 12÷4=3 4 就是 12 的因数 2 、回顾一下,我们认识的自然数可以分 成几类? 3 、其实自然数还有一种新的分类方法, 你知道吗?这就是我们今天这节课的学.
Advertisements

因数与倍数 2 、 5 的倍数的特征
计数问题中排列组合问题是最常见的,由 于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题 过程出现 “ 重复 ” 和 “ 遗漏 ” 的错误较难自检发现。 因而对这类问题归纳总结,并把握一些常见解 题模型是必要的。 计数问题中排列组合问题是最常见的,由 于其解法往往是构造性的,
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
古典概型习题课. 1 .古典概型 (1) 基本事件的特点 ①任何两个基本事件是 的. ②任何事件 ( 除不可能事件 ) 都可以表示成的和. 2 .古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1) 试验中所有可能出现的基本事件 . (2) 每个基本事件出现的可能性 . 互斥.
第四单元 100 以内数的认识
人教新课标一年级数学下册. 教学目标 1. 初步掌握 100 以内数的顺序。 2. 初步会比较 100 以内数的大小。 3. 初步结合具体事物,使同学们 感 受 100 以内数的意义,会用 100 以 内的数表示日常生活中的事物, 并进行简单的估计和交流。
新人教版四年级数学上册 笔算除法 森村中心学校 江国飞 1 、口算。 360÷30= 840÷40= 200÷50= 270÷90= 40÷20= ÷40=3600÷19≈30 90÷30=3 900÷31≈30.
第四单元 100 以内数的认识
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
§3.4 空间直线的方程.
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。
2013年MBA数学联考 排列组合技巧分析.
排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。
复习 An = n(n-1)(n-2)…(n-m+1) A = m n﹗ m n (n-m)﹗
解排列组合问题的十七种常用策略.
解排列组合问题的常用策略.
解排列组合问题的常用策略 数学组 白爱国.
人教新课标版三年级数学下册 笔算除法.
排列组合复习.
活动课 有趣的组合.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
常用逻辑用语复习课 李娟.
1.2.2 组合(二).
 第20讲 中国的交通.
组 合 复习 引入 探求1 探求2 组合 练习1 例1 巩固1 巩固2 小结 作业 公式.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
2-7、函数的微分 教学要求 教学要点.
1.2.2 第一课时 组合的概念及组合数.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第一章 预备知识 第一节 排列与组合 第二节 集合.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
排列(一).
1.2.1排列(第一课时).
1.2.1排列(一).
1.2.2 组合(一).
第一章 函数与极限.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
数列.
实数与向量的积.
顺序表的删除.
北师大版三年级数学下册 电 影 院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
小数的大小比较 仙岩镇第二小学 陈曼丽.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
1.2 子集、补集、全集习题课.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
两位数加一位数和整十数 (不进位) 翠屏小学 张兴权.
找 因 数.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
§4.5 最大公因式的矩阵求法( Ⅱ ).
Presentation transcript:

【你一定记住这些话!】 1.今天能做的事绝不拖到明天 2.自己能做的事绝不麻烦别人 解排列、组合的策略 苏教版选修2-3 姓名:YZJ 单位:江苏省滨海中学 苏教版选修2-3

从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 1.排列的定义: 从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 2.组合的定义: 从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合. 3.排列数公式: 4.组合数公式: 复习引入 排列与组合的区别与联系:与顺序有关的为排列问题, 与顺序无关的为组合问题.

一.特殊元素和特殊位置优先法 例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数. 解:由于末位和首位有特殊要求,应该优先安 排,以免不合要求的元素占了这两个位置 先排末位共有___ 然后排首位共有___ 最后排其它位置共有___ 由分步计数原理得 =288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。

练习题 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?

二.相邻元素捆绑法 例2. 7人站成一排 ,其中甲乙相邻且丙丁相 邻, 共有多少种不同的排法. 解: 由分步计数原理可得共有 =480 要求某几个元素必须排在一起的问题,可以用 捆绑法来解决问题.

练习题 5个男生3个女生排成一排,3个女生 要排在一起,有多少种不同的排法? 共有 =4320种不同的排法.

元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 三.不相邻问题插空法 例3.一个晚会的节目有4个舞蹈,2个相声,3个 独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共 有 种, 第二步将4舞蹈插入第一步排 好的6个元素中间包含首尾两个空位共有 种 不同的方法 由分步计数原理,节目的 不同顺序共有 种 元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 相 独 独 独 相

练习题 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( ) 30

四.定序问题除序法 例4.7人排队,其中甲乙丙3人顺序一定共有多 少种不同的排法 解: (空位法)设想有7把椅子让除甲乙丙以外 的四人就坐共有 种方法,其余的三个 位置甲乙丙共有 种坐法,则共有 种 方法 1 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 方法 4*5*6*7

(除序法)对于某几个元素顺序一定的排列 问题,可先把这几个元素与其他元素一起 进行排列,然后用总排列数除以这几个元 素之间的全排列数,则共有不同排法种数 是: 定序问题可以用除序法,还可转化为占位插 入模型处理 练习题 期中安排考试科目9门,语文要在数学之前 考,有多少种不同的安排顺序?

五.重排问题求幂法 例5.把6名实习生分配到7个车间实习,共有 多少种不同的分法 解:完成此事共分六步:把第一名实习生分配 到车间有 种分法. 把第二名实习生分配 到车间也有7种分法, 7 依此类推,由分步计 数原理共有 种不同的排法 一般地n不同的元素没有限制地安排在m个位置上的排列数为 种 n m

练习题 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法 ( )

六.排列组合混合问题先选后排 例6.有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同的装 法. 解:第一步从5个球中选出2个组成复合元共 有__种方法.再把5个元素(包含一个复合 元素)装入4个不同的盒内有_____种方法. 根据分步计数原理装球的方法共有_____ 解决排列组合混合问题,先选后排是最基本 的指导思想.

练习题 192 一个班有6名战士,其中正副班长各1人 现从中选4人完成四种不同的任务,每人 完成一种任务,且正副班长有且只有1人 参加,则不同的选法有________ 种 192

将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用 块隔板,插入n个元素排成一排的 个空隙中,所有分法数为 m-1 n-1 七.元素相同问题隔板法 例7.(1)有10个运动员名额,分给7个班, 每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成   一排。相邻名额之间形成9个空隙。 在9个空档中选6个位置插个隔板, 可把名额分成7份,对应地分给7个 班级,每一种插板方法对应一种分法 共有___________种分法。 将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用 块隔板,插入n个元素排成一排的 个空隙中,所有分法数为 m-1 n-1 一班 二班 三班 四班 五班 六班 七班

例7.(2)有10个运动员名额,分给7个班, 有些班级可以把名额让给其它班,有多少种 分配方案?

例7.(2)有10个运动员名额,分给7个班, 有些班级可以把名额让给其它班,有多少种 分配方案? 将n个相同的元素分成m份(n,m为正整数),每份可以没有元素,可以用 块隔板,插入n个元素和m-1块板共n+m-1个位置中,所有分法数为 m-1

练习题 (1)10个相同的球装在5个盒中,每盒至少一个,有多少种装法? (2)10个相同的球装在5个盒中, 盒可空,有多少种装法?

八.均分问题勿忘除 例8. 6本不同的书平均分成3堆,每堆2本共有 多少分法? 解: 分三步取书得 种方法,但这里出现 重复计数的现象,不妨记6本书为ABCDEF 若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则 中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF,AB,CD)共有 种取法 ,而 这些分法仅是(AB,CD,EF)一种分法,故共 有 种分法。 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以 (n为均分的组数)避免重复计数。

练习题 1. 将13个球队分成3组,一组5个队,其它两组4 个队, 有多少分法? 2.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______

+ 九. 合理分类与分步 例9.在一次演唱会上共10名演员,其中8人能 够唱歌,5人会跳舞,现要演出一个2人唱 歌2人伴舞的节目,有多少选派方法? 解: 10演员中有5人只会唱歌,2人只会跳舞 3人为全能演员。 以只会唱歌的5人是否 选上唱歌人员为标准进行研究 只会唱 的5人中没有人选上唱歌人员共有____ 种,只会唱的5人中只有1人选上唱歌人 员________种,只会唱的5人中只有2人 选上唱歌人员有____ 种,由分类计数 原理共有______________________种。 +

本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 解含有约束条件的排列组合问题,可按元素 的性质进行分类,按事件发生的连续过程分 步,做到标准明确。分步层次清楚,不重不 漏,分类标准一旦确定要贯穿于解题过程的 始终。

练习题 从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_______ 34

十.构造模型公式法 例10.马路上有编号为1,2,3,4,5,6,7,8,9的 九只路灯,现要关掉其中的3盏,但不能关 掉相邻的2盏或3盏,也不能关掉两端的2 盏,求满足条件的关灯方法有多少种? 解:把此问题当作一个排队模型在6盏 亮灯的5个空隙中插入3个不亮的灯 有________ 种 一些不易理解的排列组合题如果能转化为 非常熟悉的模型,如占位填空模型,排队 模型,装盒模型等,可使问题直观解决

练习题 某排共有10个座位,若4人就坐,每人左右 两边都有空位,那么不同的坐法有多少种? 120

解:从5个球中取出2个与盒子对号有_____种 还剩下3球3盒序号不能对应, 利用实际 操作法,如果剩下3,4,5号球, 3,4,5号盒 十一.没有模型硬扳功 例11.设有编号1,2,3,4,5的五个球和编号1,2 3,4,5的五个盒子,现将5个球投入这五 个盒子内,要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同,. 有多少投法 解:从5个球中取出2个与盒子对号有_____种 还剩下3球3盒序号不能对应, 利用实际 操作法,如果剩下3,4,5号球, 3,4,5号盒 3号球装4号盒时,则4,5号球有只有1种装法 3号盒 4号盒 5号盒 3 4 5

十一.没有模型硬扳功 例11.设有编号1,2,3,4,5的五个球和编号1,2 3,4,5的五个盒子,现将5个球投入这五 个盒子内,要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同,. 有多少投法 解:从5个球中取出2个与盒子对号有_____种 还剩下3球3盒序号不能对应, 利用实际 操作法,如果剩下3,4,5号球, 3,4,5号盒 3号球装4号盒时,则4,5号球有只有1种装法, 同理3号球装5号盒时,4,5号球有也 只有1种装法,由分步计数原理有2 种

对于条件比较复杂的排列组合问题,不易用 公式进行运算,往往利用穷举法或画出树状 图会收到意想不到的结果 练习题 同一寝室4人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张 贺年卡不同的分配方式有多少种? (9) 2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则 不同的着色方法有____种 2 1 3 4 5 72

练习题 我们班里有43位同学,从中任抽5人,正、 副班长、团支部书记至少有一人在内的 抽法有多少种?

27 34 练习题 1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_______ 1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_______ 34 2. 3成人2小孩乘船游玩,1号船最多乘3人, 2 号船最多乘2人,3号船只能乘1人,他们任选 2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. 27