第五章:随机变量的收敛性 随机样本:IID样本 , 统计量:对随机样本的概括 收敛性:当样本数量n趋向无穷大时,统计量的变化

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
§5.2 中心极限定理 定理3(同分布中心极限定理)设随机变量X1, X2, …, Xn, …相互独立,服从相同分布,且有有限的数学期望和方差,即: E(Xk) =,D(Xk) =2,k = 1, 2, … 则随机变量 的分布函数Fn(x)满足: 对任意的x,有.
本章主要内容 §5.1 大数定律 §5.2 中心极限定理 独立同分布的中心极限定理 二项分布的正态近似
第四章 概率、正态分布、常用统计分布.
第三章 函数逼近 — 最佳平方逼近.
《高等数学》(理学) 常数项级数的概念 袁安锋
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
本讲义可在网址 或 ftp://math.shekou.com 下载
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
2-7、函数的微分 教学要求 教学要点.
1.2 事件的频率与概率 一、事件的频率 二、概率的公理化体系 1.2 事件的频率与概率.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第6章 统计量及其抽样分布 统计量 关于分布的几个概念 由正态分布导出的几个重要分布 样本均值的分布与中心极限定理 样本比例的抽样分布
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第十章 方差分析.
数据统计与分析 秦 猛 南京大学物理系 手机: 第十讲 数据统计与分析 秦 猛 南京大学物理系 办公室:唐仲英楼A 手机:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
概率论 ( Probability) 2016年 2019年4月13日星期六.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第5章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
第一部分:概率 对应教材Chp1-5 课堂上讲述会较快,将知识点串起来,建议大家通读教材 主要内容: 随机变量及其分布
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§5.2 中心极限定理 人们已经知道,在自然界和生产实践中遇到的大量随机 变量都服从或近似服从正态分布,正因如此,正态分布占有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第二部分:统计推断 Chp6:统计推断概述 Chp7:非参数推断 Chp8:Bootstrap Chp9:参数推断 Chp10:假设检验
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第二节 中心极限定理 一、问题的引入 二、基本定理 三、典型例题 四、小结.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第 四 章 大 数 定 理 与 中 心 极 限 定 理.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
§2 方阵的特征值与特征向量.
定义 设连续型随机变量 概率密度为 分布函数是 特别地, 其概率密度为 一、正态分布的相关内容:.
难点:连续变量函数分布与二维连续变量分布
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
数理统计基本知识.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
第五章 大数定律和中心极限定理 关键词: 马尔可夫不等式 切比雪夫不等式 大数定律 中心极限定理.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

第五章:随机变量的收敛性 随机样本:IID样本 , 统计量:对随机样本的概括 收敛性:当样本数量n趋向无穷大时,统计量的变化 Y为随机变量,Y的分布称为统计量的采样分布 如:样本均值、样本方差、样本中值… 收敛性:当样本数量n趋向无穷大时,统计量的变化 大样本理论、极限定理、渐近理论 对统计推断很重要

收敛性 主要讨论两种收敛性 依概率收敛 依分布收敛 大数定律:样本均值依概率收敛于分布的期望 中心极限定理:样本均值依分布收敛于正态分布 在第一章中引入概率的概念时曾经指出,频率是概率的反映,随着观测次数n的增加,频率将会逐渐稳定到概率。详细地说:设在一次观测中事件A发生的概率,如果观测了次(也就是一个重贝努里试验),A发生了次,则A在次观测中发生的频率,当充分大时,逐渐稳定到。

例1:依概率收敛 概率的频率解释:随着观测次数n的增加,频率将会逐渐稳定到概率 设在一次观测中事件A发生的概率为 如果观测了n次,事件A发生了 次,则当n充分大时,A在次观测中发生的频率 逐渐稳定到概率p 。 那么 不对,若 则对于 ,总存在 ,当 时,有 成立 但若取 , 由于 即无论N多大,在N以后,总可能存在n ,使 所以 不可能在通常意义下收敛于p。 在第一章中引入概率的概念时曾经指出,频率是概率的反映,随着观测次数n的增加,频率将会逐渐稳定到概率。详细地说:设在一次观测中事件A发生的概率,如果观测了次(也就是一个重贝努里试验),A发生了次,则A在次观测中发生的频率,当充分大时,逐渐稳定到。

例2:依分布收敛 考虑随机序列 ,其中 直观: 集中在0处, 收敛到0 但 (Chebyshev不等式)

两种收敛的定义 5.1 定义:令 为随机变量序列,X为另一随机变量,用Fn表示Xn的CDF,用F表示X的CDF 1、如果对每个 ,当 时, 1、如果对每个 ,当 时, 则Xn依概率收敛于X ,记为 。 2、如果对所有F的连续点t,有 则Xn依分布收敛于X ,记为 。 同教材上

两种收敛的定义 当极限分布为点分布时,表示为 依概率收敛: 依分布收敛:

其他收敛 还有一种收敛:均方收敛(L2收敛, converge to X in quadratic mean) 对证明概率收敛很有用 当极限分布为点分布时,记为 对应还有:L1收敛(converge to X in L1 )

其他收敛 依概率收敛 随机变量序列 ,当对任意 , 随机变量序列 ,当对任意 , 则称随机变量序列 几乎处处依概率收敛到X (converge almost surely to X) ,记为: 几乎处处收敛:比依概率收敛更强 或 或

各种收敛之间的关系 点分布,c为实数 Point-mass distribution Quadratic mean probability almost surely 反过来不成立!

例:伯努利大数定律 设在一次观测中事件A发生的概率为 ,如果观测了n次,事件A发生了 次,则当n充分大时,A在次观测中发生的频率 逐渐稳定到概率p 。 即对于 , 表示当n充分大时,事件发生的频率 与其概率p存在较大偏差的可能性小。

例:5.3 令 直观: 集中在0处, 收敛到0 依概率收敛: (Chebyshev不等式)

例:续 依分布收敛:令F表示0处的点分布函数,Z表示标准正态分布的随机变量

收敛的性质

弱大数定律(WLLN) 独立同分布(IID)的随机变量序列 , 方差 ,则样本均值 依概率收敛于期望 ,即对任意 方差 ,则样本均值 依概率收敛于期望 ,即对任意 称 为 的一致估计(一致性) 在定理条件下,当样本数目n无限增加时,随机样本均值将几乎变成一个常量 对样本方差呢?依概率收敛于方差 证明:根据Cheyshev不等式

样本方差依概率收敛于分布的方差

强大数定律(SLLN) 独立同分布(IID)的随机变量序列 , 方差 ,则样本均值 几乎处处收敛于期望 ,即对任意

例:大数定律 考虑抛硬币的问题,其中正面向上的概率为p,令 表示单次抛掷的输出(0或1)。因此 若共抛掷n次,正面向上的比率为 。根据大数定律, 但这并不意味着 在数值上等于p 而是表示当n很大时, 的分布紧围绕p 令 ,若要求 ,则n至少为多少? 解:

中心极限定理 (Central Limit Theorem, CLT) 独立同分布(IID)的随机变量序列 , ,则样本均值 近似服从期望为 方差为 的正态分布 ,即 其中Z为标准正态分布或 也记为 无论随机变量X为何种类型的分布,只要满足定理条件,其样本均值就近似服从正态分布。正态分布很重要 但近似的程度与原分布有关 大样本统计推理的理论基础

中心极限定理 中心极限定理试验 http://jyjs.gzhu.edu.cn:8080/skills/portal/resources/65995/67826/entryFile/swf/zhongxinjixian.htm

例:中心极限定理 每个计算机程序的错误的数目为X, 现有125个程序,用 表示各个程序中的错误的数目,求 的近似值 解:

中心极限定理的应用之一 —二项概率的近似计算 设 是n重贝努里试验中事件A发生的次数,则 ,对任意 ,有      当n很大时,直接计算很困难。这时 如果不大(即p<0.1,np<5)或 不大,则可用Poisson分布来近似计算

中心极限定理的应用之一 —二项概率的近似计算(续) 当p不太接近于0或1时,可根据CLT,用正态分布来近似计算 根据CLT, 德莫弗—拉普拉斯定理

中心极限定理的应用之一 —二项概率的近似计算(续) 例:已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为3:1,现种植杂交种400株,求结黄果植株介于83到117之间的概率。     由题意:任意一株杂交种或结红果或结黄果,只有两种可能性,且结黄果的概率 种植杂交种400株,相当于做了400次贝努里试验,记为400株杂交种结黄果的株数,则 当n=400较大时,根据CLT,

中心极限定理的应用之一 —二项概率的近似计算(续) 例:某单位内部有260架电话分机,每个分机有4%的时间要用外线通话。可以认为各个电话分机用不同外线是相互独立的。问:总机需备多少条外线才能以95%的把握保证各个分机在使用外线时不必等候?     一个分机使用外线的概率 260个分机中同时使用外线的分机数 设总机确定的最少外线条数为x, 则根据CLT,

中心极限定理 标准差 通常不知道,可用样本标准差代替,中心极限定理仍成立,即 其中

中心极限定理 无论随机变量X为何种类型的分布,只要满足定理条件,其样本均值就近似服从正态分布 正态近似的程度:Berry-Esseen定理 但近似的程度与原分布有关 正态近似的程度:Berry-Esseen定理 若 ,则 还有中心极限定理得多变量版本

多元分布的中心极限定理 令 为IID随机向量,其中 协方差矩阵为 ,令样本均值向量为 则 。 ,均值向量为 ,其中

Delta方法 随机变量的变换的中心极限定理 假定 ,且g 可导, 则 换句话说,

例: 令 为IID, 其均值和方差(有限)分别为 则根据CLT: 假设 则利用Delta方法,有

Delta方法 多元变量情况 假设 为随机向量序列, 且 , 令 且 令 表示 时 的 值,假设 中的元素非0,则

例: 令 为IID随机向量, 其均值为 ,方差为 令 ,根据CLT: 定义 ,其中 所以 则

下节课内容: 作业: Chp5:第2、4、6、9、13题           模拟方法:随机采样(Chp24)