第六章 稳定性模型 6.1 捕鱼业的持续收获 6.2 军备竞赛 6.3 种群的相互竞争 6.4 种群的相互依存 6.5 种群的弱肉强食.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
人的性别遗传 合肥市第四十九中学 丁 艳. 男女成对染色体排序图 1 、男性和女性各 23 对染色体有何异同 ? 哪 一对被称为性染色体 ? 2 、这两幅图中,哪幅 图显示的是男性的染色 体?哪幅图显示的是女 性染色体? 3 、图中哪条染色体是 Y 染色体?它与 X 染色体 在形态上的主要区别是.
1、一般地说,在生物的体细胞中, 和 都是成对存在的。
辨性别 A B. 辨性别 A B 第三节人类染色体与性别决定 昌邑市龙池初中 杨伟红 学习目标 1.理解人的染色体组成和传递规律。 2.解释人类性别决定的原理。 3.通过探究活动,解读数据了解生男生女的比例。
§3.4 空间直线的方程.
3.4 空间直线的方程.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
南京市国税局国际税务管理处 二00九年二月二十四日
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
第三章 函数逼近 — 最佳平方逼近.
如何开好通表会 荔湾区教育局第二期学生团干培训 2009年9月 1.
第三章 微分方程方法建模 3.1 微分方程建模 3.2 草地水量模型 3.3 传染病模型 3.4 食饵-捕食者模型.
数学建模方法及其应用 韩中庚 编著.
常用逻辑用语复习 知识网络 常用逻辑用语 命题及其关系 简单的逻辑联结词 全称量词与存在量词 四种命题 充分条件与必要条件 量词 全称量词 存在量词 含有一个量词的否定 或 且 非或 并集 交集 补集 运算.
常用逻辑用语复习课 李娟.
色 弱 與 色 盲.
第4章 种群问题模型 种群问题是指种群在数量或密度上随时间的变化问题,有单物种种群和多物种种群问题之分。
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
宠物之家 我的宠物性别? 雌(♀) or 雄(♂) 第一阶段:我的宠物我做主 第二阶段:宠物“相亲记” 第三阶段:家族诞生
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第2章 Z变换 Z变换的定义与收敛域 Z反变换 系统的稳定性和H(z) 系统函数.
第七章 稳定性模型 7.1 捕鱼业的持续收获 7.2 军备竞赛 7.3 种群的相互竞争 7.4 种群的相互依存 7.5 食饵-捕食者模型
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
计算机数学基础 主讲老师: 邓辉文.
寫作評估 實用文寫作講解 1.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
6.4不等式的解法举例(1) 2019年4月17日星期三.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第一节 土地利用对生态系统的干扰与生态重建.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
中国大连高级经理学院博士后入站申请汇报 汇报人:XXX.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
一元二次不等式解法(1).
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
正弦函数图象是怎样画的? 正切函数是不是周期函数? 正切函数的定义域是什么? y=tanx,xR, 的图象 叫做正切曲线;
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第 8 章 計量與質性預測變數之迴歸模型.
§2 方阵的特征值与特征向量.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
反比例函数(复习课) y o x 常州市新北区实验中学 高兴林.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
三角 三角 三角 函数 余弦函数的图象和性质.
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
百雞問題 製作者:張美玲 資料來源:數學誕生的故事—凡異出版社.
Sssss.
1.2.2 充要条件 高二数学 选修 1-1 第一章 常用逻辑用语.
Presentation transcript:

第六章 稳定性模型 6.1 捕鱼业的持续收获 6.2 军备竞赛 6.3 种群的相互竞争 6.4 种群的相互依存 6.5 种群的弱肉强食

稳定性模型 对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势 ——平衡状态是否稳定。 不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。

再生资源(渔业、林业等)与非再生资源(矿业等) 6.1 捕鱼业的持续收获 再生资源(渔业、林业等)与非再生资源(矿业等) 背景 再生资源应适度开发——在持续稳产前提下实现最大产量或最佳效益。 问题及 分析 在捕捞量稳定的条件下,如何控制捕捞使产量最大或效益最佳。 如果使捕捞量等于自然增长量,渔场鱼量将保持不变,则捕捞量稳定。

产量模型 假设 建模 x(t) ~ 渔场鱼量 无捕捞时鱼的自然增长服从 Logistic规律 r~固有增长率, N~最大鱼量 单位时间捕捞量与渔场鱼量成正比 h(x)=Ex, E~捕捞强度 建模 捕捞情况下渔场鱼量满足 不需要求解x(t), 只需知道x(t)稳定的条件

一阶微分方程的平衡点及其稳定性 一阶非线性(自治)方程 F(x)=0的根x0 ~微分方程的平衡点 设x(t)是方程的解,若从x0 某邻域的任一初值出发,都有 称x0是方程(1)的稳定平衡点 不求x(t), 判断x0稳定性的方法——直接法 (1)的近似线性方程

产量模型 平衡点 稳定性判断 E~捕捞强度 r~固有增长率 x0 稳定, 可得到稳定产量 x1 稳定, 渔场干枯

产量模型 在捕捞量稳定的条件下,控制捕捞强度使产量最大 图解法 f 与h交点P P的纵坐标 h~产量 P的横坐标 x0~平衡点 产量最大 y y=h(x)=Ex x N y=f(x) y=rx P* y=E*x hm x0*=N/2 P x0 h f 与h交点P P的纵坐标 h~产量 P的横坐标 x0~平衡点 产量最大 控制渔场鱼量为最大鱼量的一半

效益模型 在捕捞量稳定的条件下,控制捕捞强度使效益最大. 假设 鱼销售价格p 单位捕捞强度费用c 收入 T = ph(x) = pEx 支出 S = cE 单位时间利润 稳定平衡点 求E使R(E)最大 渔场鱼量

捕捞过度 封闭式捕捞追求利润R(E)最大 开放式捕捞只求利润R(E) > 0 R(E)=0时的捕捞强度(临界强度) Es=2ER 令=0 R(E)=0时的捕捞强度(临界强度) Es=2ER 临界强度下的渔场鱼量 S(E) T(E) r E ER E* Es 捕捞过度

6.2 军备竞赛 目的 假设 进一步假设 描述双方(国家或国家集团)军备竞赛过程 解释(预测)双方军备竞赛的结局 6.2 军备竞赛 目的 描述双方(国家或国家集团)军备竞赛过程 解释(预测)双方军备竞赛的结局 1)由于相互不信任,一方军备越大,另一方军备增加越快; 假设 2)由于经济实力限制,一方军备越大,对自己军备增长的制约越大; 3)由于相互敌视或领土争端,每一方都存在增加军备的潜力。 进一步假设 1)2)的作用为线性;3)的作用为常数

建模 x(t)~甲方军备数量, y(t)~乙方军备数量 ,  ~ 本方经济实力的制约; k, l ~ 对方军备数量的刺激; g, h ~ 本方军备竞赛的潜力。 军备竞赛的结局 t  时的x(t),y(t) 微分方程的平衡点及其稳定性

线性常系数微分方程组 的平衡点及其稳定性 平衡点P0(x0,y0)=(0,0) ~代数方程 的根 若从P0某邻域的任一初值出发,都有 称P0是微分方程的稳定平衡点 记系数矩阵 特征方程 特征根

线性常系数微分方程组 的平衡点及其稳定性 特征根 平衡点 P0(0,0) 微分方程一般解形式 1,2为负数或有负实部 p > 0 且 q > 0 平衡点 P0(0,0)稳定 p < 0 或 q < 0 平衡点 P0(0,0)不稳定

模型 军备竞赛 平衡点 稳定性判断 系数矩阵 平衡点(x0, y0)稳定的条件

模型的定性解释 模型 平衡点 双方军备稳定(时间充分长后趋向有限值)的条件 ,  ~ 本方经济实力的制约; k, l ~ 对方军备数量的刺激; g, h ~ 本方军备竞赛的潜力。 双方经济制约大于双方军备刺激时,军备竞赛 才会稳定,否则军备将无限扩张。 2) 若g=h=0, 则 x0=y0=0, 在  > kl 下 x(t), y(t)0, 即友好邻国通过裁军可达到永久和平。

模型 模型的定性解释 ,  ~ 本方经济实力的制约; k, l ~ 对方军备数量的刺激; g, h ~ 本方军备竞赛的潜力。 3)若 g,h 不为零,即便双方一时和解,使某时x(t), y(t)很小,但因 ,也会重整军备。 4)即使某时一方(由于战败或协议)军备大减, 如 x(t)=0, 也会因 使该方重整军备, 即存在互不信任( ) 或固有争端( ) 的单方面裁军不会持久。

6.3 种群的相互竞争 一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。 6.3 种群的相互竞争 一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。 当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。 建立数学模型描述两个种群相互竞争的过程,分析产生这种结局的条件。

模型假设 模型 有甲乙两个种群,它们独自生存时数量变化均服从Logistic规律; 两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比; 甲对乙有同样的作用。 模型 对于消耗甲的资源而言,乙(相对于N2)是甲(相对于N1) 的 1 倍。 对甲增长的阻滞作用,乙大于甲 乙的竞争力强

模型 模型分析 (平衡点及其稳定性) (二阶)非线性(自治)方程 的平衡点及其稳定性 平衡点P0(x10, x20) ~ 代数方程 的根

判断P0 (x10,x20) 稳定性的方法——直接法 (1)的近似线性方程 平衡点 P0稳定(对2,1) p > 0 且 q > 0 平衡点 P0不稳定(对2,1) p < 0 或 q < 0

模型 仅当1, 2 < 1或1, 2 > 1时,P3才有意义

平衡点稳定性分析 平衡点 Pi 稳定条件: p > 0 且 q > 0

种群竞争模型的平衡点及稳定性 P1, P2 是一个种群存活而另一灭绝的平衡点 P3 是两种群共存的平衡点 P1稳定的条件 1<1 ? 平 衡点 稳定条件 2>1, 1<1 1>1, 2<1 1<1, 2<1 不稳定 P1, P2 是一个种群存活而另一灭绝的平衡点 P3 是两种群共存的平衡点 P1稳定的条件 1<1 ?

平衡点稳定性的相轨线分析 从任意点出发(t=0)的相轨线都趋向P1(N1,0) (t) P1(N1,0)是稳定平衡点 (1) 2>1, 1<1 S1 S2 S3 t   x1, x2  t   x1 , x2 t   x1, x2 从任意点出发(t=0)的相轨线都趋向P1(N1,0) (t) P1(N1,0)是稳定平衡点

有相轨线趋向P1 P1, P2都不(局部)稳定 有相轨线趋向P2 P1稳定的条件:直接法2>1 加上与(4)相区别的 1<1 (2) 1>1, 2<1 (3) 1<1, 2<1 P2 稳定 P3 稳定 有相轨线趋向P1 P1, P2都不(局部)稳定 (4) 1>1, 2>1 P2 有相轨线趋向P2 P1稳定的条件:直接法2>1 P1 加上与(4)相区别的 1<1 P1全局稳定

结果解释 P1稳定的条件:1<1, 2>1 对甲增长的阻滞作用,乙小于甲乙的竞争力弱 对于消耗甲的资源而言,乙(相对于N2)是甲(相对于N1)的1 倍。 对甲增长的阻滞作用,乙小于甲乙的竞争力弱 甲达到最大容量,乙灭绝 2>1 甲的竞争力强 P2稳定的条件:1>1, 2<1 P3稳定的条件:1<1, 2<1 通常1  1/2,P3稳定条件不满足

6.4 种群的相互依存 甲乙两种群的相互依存有三种形式 1) 甲可以独自生存,乙不能独自生存;甲乙一起生存时相互提供食物、促进增长。 6.4 种群的相互依存 甲乙两种群的相互依存有三种形式 1) 甲可以独自生存,乙不能独自生存;甲乙一起生存时相互提供食物、促进增长。 2) 甲乙均可以独自生存;甲乙一起生存 时相互提供食物、促进增长。 3) 甲乙均不能独自生存;甲乙一起生存时相互提供食物、促进增长。

模型假设 模型 甲可以独自生存,数量变化服从Logistic规律; 甲乙一起生存时乙为甲提供食物、促进增长。 乙为甲提供食物是甲消耗的1 倍 模型 甲为乙提供食物是乙消耗的2 倍

种群依存模型的平衡点及稳定性 平衡点 稳定条件 不稳定 P2是甲乙相互依存而共生的平衡点

平衡点P2稳定性的相轨线 1<1, 2>1, 12<1 P2稳定

结果解释 甲可以独自生存 乙不能独立生存 P2稳定条件:1<1, 2>1, 12<1 2>1 ~ 甲必须为乙提供足够的食物——甲为乙提供的食物是乙消耗的 2 倍 12<1 ~ 2>1 前提下P2存在的必要条件 1<1 ~ 2>1, 12<1 的需要,且1必须足够小,才能在2>1条件下使12<1 成立

6.5 种群的弱肉强食(食饵-捕食者模型) 种群甲靠丰富的天然资源生存,种群乙靠捕食甲为生,形成食饵-捕食者系统,如食用鱼和鲨鱼,美洲兔和山猫,害虫和益虫。 模型的历史背景——一次世界大战期间地中海渔业的捕捞量下降(食用鱼和鲨鱼同时捕捞),但是其中鲨鱼的比例却增加,为什么?

食饵-捕食者模型(Volterra) 食饵(甲)数量 x(t), 捕食者(乙)数量 y(t) 甲独立生存的增长率 r 乙独立生存的死亡率 d 甲使乙的死亡率减小,减小量与 x成正比 a ~捕食者掠取食饵能力 b ~食饵供养捕食者能力 方程(1),(2) 无解析解

Volterra模型的平衡点及其稳定性 稳定性分析 平衡点 p =0, q > 0 P: 临界状态 q < 0 P´ 不稳定

用数学软件MATLAB求微分方程数值解 x~y 平面上的相轨线 t x(t) y(t) 20.0000 4.0000 0.1000 20.0000 4.0000 0.1000 21.2406 3.9651 0.2000 22.5649 3.9405 0.3000 23.9763 3.9269 … 5.1000 9.6162 16.7235 5.2000 9.0173 16.2064 9.5000 18.4750 4.0447 9.6000 19.6136 3.9968 9.7000 20.8311 3.9587 x~y 平面上的相轨线

食饵-捕食者模型(Volterra) 计算结果(数值,图形) x(t), y(t)是周期函数,相图(x,y)是封闭曲线 观察,猜测 x(t), y(t)是周期函数,相图(x,y)是封闭曲线 x(t), y(t)的周期约为9.6 xmax 65.5, xmin  6, ymax  20.5, ymin  3.9 用数值积分可算出 x(t), y(t)一周期的平均值: x(t)的平均值约为25, y(t)的平均值约为10。

用相轨线分析 点稳定性 消去dt 取指数 c 由初始条件确定

用相轨线分析 点稳定性 f(x) x x0 fm 相轨线 在相平面上讨论相轨线的图形 g(y) gm y0 y 时无相轨线 以下设

存在x1<x0<x2, 使f(x1)=f(x2)=p Q1(x1,y0),Q2(x2,y0) 相轨线 f(x) x x0 fm y y0 x x0 P x Q3 Q4 g(y) gm y0 y y2 y1 x Q3 Q4 x1 x2 Q1 Q2 x1 x2 p q y1 y2 相轨线退化为P点 P~中心 存在x1<x0<x2, 使f(x1)=f(x2)=p Q1(x1,y0),Q2(x2,y0) 存在y1<y0<y2,使g(y1)=g(y2)=q Q3(x,y1), Q4(x,y2) 相轨线是封闭曲线族

用相轨线分析 点稳定性 x(t), y(t)是周期函数(周期记 T) 相轨线是封闭曲线 求x(t), y(t) 在一周期的平均值 轨线中心

模型解释 T3 P T2 初值 T4 • T1 相轨线的方向 T1 T2 T3 T4 x(t) 的“相位”领先 y(t)

模型解释 捕食者 数量 r ~食饵增长率 a ~捕食者掠取食饵能力 捕食者数量与r成正比, 与a成反比 食饵数量 d ~捕食者死亡率 P r/a d/b 捕食者 数量 r ~食饵增长率 a ~捕食者掠取食饵能力 捕食者数量与r成正比, 与a成反比 食饵数量 d ~捕食者死亡率 b ~食饵供养捕食者能力 食饵数量与d成正比, 与b成反比

模型解释 • • • 一次大战期间地中海渔业的捕捞量下降,但是其中鲨鱼的比例却在增加,为什么? 自然环境 捕捞 rr-1, dd+1 x y 捕捞 rr-1, dd+1 • • 战时捕捞 rr-2, dd+2 , 2 < 1 食饵(鱼)减少, 捕食者(鲨鱼)增加 还表明:对害虫(食饵)—益虫(捕食者)系统,使用灭两种虫的杀虫剂, 会使害虫增加,益虫减少。

食饵-捕食者模型(Volterra)的缺点与改进 多数食饵—捕食者系统观察不到周期震荡,而是趋向某个平衡状态,即存在稳定平衡点 Volterra模型 改写 加Logistic项 有稳定平衡点

食饵-捕食者模型(Volterra)的缺点与改进 相轨线是封闭曲线,结构不稳定——一旦离开某一条闭轨线,就进入另一条闭轨线,不恢复原状。 自然界存在的周期性平衡生态系统是结构稳定的,即偏离周期轨道后,内部制约使系统恢复原状。 r1=1, N1=20, 1=0.1, w=0.2, r2=0.5, 2=0.18 相轨线趋向极限环 结构稳定

两种群模型的几种形式 相互竞争 相互依存 弱肉强食