本章优化总结.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
专题25 椭圆、双曲线、抛物线.
§3.4 空间直线的方程.
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
圆锥曲线复习.
直线与双曲线的位置关系.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
圆的方程复习.
圆复习.
1.直线过点(2,4)与抛物线y2=8x只有一个公共点,这样的直线共有(  )
1.设圆的圆心是C(a,b),半径为r,则圆的标准方程是(x-a)2+(y-b)2=r2
第二章 二次函数 第二节 结识抛物线
四种命题 2 垂直.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
直线和圆的位置关系.
第9讲 圆锥曲线的热点问题.
高考数学复习 抛物线(1) 李凤君.
章末归纳总结.
北师大版(必修2) 课题:§2.3 直线与圆的位置关系 授课教师:韩伟 年级:高中一年级 单位:阜师院附中.
2.3.2 抛物线的简单几何性质.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
2.3 抛物线.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
实数与向量的积.
线段的有关计算.
圆锥曲线的统一定义.
抛物线及其标准方程 高中数学人教B版选修2-1 第二章2.4.1 济南历城一中高二数学组 刘宁.
3.4 圆心角(1).
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
本章优化总结.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
3.1.3 导数的几何意义.
《工程制图基础》 第四讲 几何元素间的相对位置.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
直线和圆的位置关系 ·.
双曲线的性质.
一元二次不等式解法(1).
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
3.2 导数的计算.
2.4.2 抛物线的简单几何性质.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
1.4.3正切函数的图象及性质.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
直线的倾斜角与斜率.
双曲线及其标准方程(1).
24.4弧长和扇形面积 圆锥的侧面积和全面积.
椭圆的简单几何性质.
2.3 抛物线   2.3.1 抛物线及其标准方程.
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
2.2.2 椭圆的简单几何性质  第一课时 椭圆的简单几何性质.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

本章优化总结

知识体系网络 本章优化总结 专题探究精讲

知识体系网络

题型特点:对圆锥曲线定义的考查多以选择题和填空题形式出现,一般难度相对较小,若想不到定义的应用,计算量将会加大.解题时应注意应用. 专题探究精讲 圆锥曲线的定义 题型特点:对圆锥曲线定义的考查多以选择题和填空题形式出现,一般难度相对较小,若想不到定义的应用,计算量将会加大.解题时应注意应用. 知识方法:(1)平面内满足|PF1|+|PF2|=2a(2a>|F1F2|)的点P的轨迹叫做椭圆,定义可实现椭圆上的点到两焦点的距离的相互转化.

(2)平面内满足||PF1|-|PF2||=2a(2a<|F1F2|)的点P的轨迹叫做双曲线,|PF1|-|PF2|=2a(2a<|F1F2|)表示焦点F2对应的一支,定义可实现双曲线上的点到两焦点的距离的相互转化. (3)平面内与一个定点F和一条定直线l(不经过点F)距离相等的点的轨迹叫做抛物线,定义可实现抛物线上的点到焦点与到准线距离的相互转化.

例1

【答案】 B

圆锥曲线的性质 题型特点:有关圆锥曲线的焦点、离心率等问题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解. 知识方法:圆锥曲线的简单几何性质 (1)圆锥曲线的范围往往作为解题的隐含条件. (2)椭圆、双曲线有两条对称轴和一个对称中心,抛物线只有一条对称轴. (3)椭圆有四个顶点,对曲线有两个顶点,抛物线只有一个顶点. (4)双曲线焦点位置不同,渐近线方程不同. (5)圆锥曲线中基本量a,b,c,e,p的几何意义及相互转化.

例2

【答案】 D

直线与圆锥曲线的位置关系 题型特点:近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及,有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长等. 知识方法:与圆锥曲线有关的最值问题大多是综合性、解法灵活、技巧性强、涉及代数、几何等知识的题目,常用的解决方法有两种,一是几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;二是代数法:若题目的条件和结论能体现一种明确的函数,则可首先列出函数关系式,再求这个函数的最值.

例3

圆锥曲线中的定点、定值、最值问题 题型特点:圆锥曲线中的最值、取值范围问题既是高考的热点问题,也是难点问题,解决这类问题的基本思想是建立目标函数和不等关系,根据目标函数和不等式求最值、取值范围,因此这类问题的难点就是如何建立目标函数和不等关系. 知识方法:圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长、短轴,双曲线的虚、实轴;抛物线的焦点等.可通过直接计算而得到.另外还可用“特例法”和“相关曲线系法”.

圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题.这两类问题的解决往往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,三角函数有界性,以及数形结合、设参、转化代换等途径来解决.特别注意函数思想,观察分析图形特征,利用数形结合等思想方法.

如图所示,过抛物线y2=2px的顶点O作两条互相垂直的弦交抛物线于A、B两点. 求△AOB面积的最小值. 例4

本部分内容讲解结束 按ESC键退出全屏播放 点此进入课件目录 谢谢使用