第三节 定积分在物理学上的应用 一、 变力沿直线所作的功 二、 液体的侧压力 三、 引力问题 四、 转动惯量 (补充) 第六章

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
§3.4 空间直线的方程.
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
第六章 定积分的应用 利用元素法解决: 定积分在几何上的应用 (L.P184) 定积分在物理上的应用.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
第六章 定积分的应用 第一节:定积分的元素法 第二节:定积分在几何上的应用 第三节:定积分在物理上的应用.
第十章 第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的 等价条件 机动 目录 上页 下页 返回 结束.
第十章 定积分的应用(一) 一、平面图形的面积 面积公式(直角坐标,极坐标) 二、由平行截面面积求体积 由平行截面面积求体积
3.4 定积分的进一步应用 平面图形的面积 立体的体积 平面曲线的弧长 变力沿直线所作的功
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
设立体介于x=a,x=b之间,A(x)表示过
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
一 电势 B点电势 A点电势, 令 令.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
高等数学 西华大学应用数学系朱雯.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
实数与向量的积.
§5.3万有引力定律 一.历史的回顾 1.地心说和本轮理论(C.Ptolemy,约前150)
3.3 垂径定理 第2课时 垂径定理的逆定理.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
定积分应用 欧阳顺湘 北京师范大学珠海分校.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
五、 功 水压力和引力 (一)变力沿直线段作功: 恒力作功: O a b F(x) 设有一变力F(x) 随位移x 而变,
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
抛物线的几何性质.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
直线和圆的位置关系 ·.
第三节 定积分在物理学上的应用 一、 变力沿直线所作的功 二、 液体的侧压力 三、 引力问题 四、 转动惯量 第六章
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
锐角三角函数(1) ——正 弦.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四节 第十章 重积分的应用 一、立体体积 二、曲面的面积 三、物体的质心 四、物体的转动惯量 五、物体的引力.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
带电粒子在匀强磁场中的运动 扬中市第二高级中学 田春林 2018年11月14日.
空间几何体的结构 第一讲.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
生活中的几何体.
第三章 图形的平移与旋转.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

第三节 定积分在物理学上的应用 一、 变力沿直线所作的功 二、 液体的侧压力 三、 引力问题 四、 转动惯量 (补充) 第六章 机动 目录 上页 下页 返回 结束

一、 变力沿直线所作的功 设物体在连续变力 F(x) 作用下沿 x 轴从 x=a 移动到 力的方向与运动方向平行, 求变力所做的功 . 在其上所作的功元 素为 因此变力F(x) 在区间 上所作的功为 机动 目录 上页 下页 返回 结束

位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) , 例1. 在一个带 +q 电荷所产生的电场作用下, 一个单 位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) , 求电场力所作的功 . 解: 当单位正电荷距离原点 r 时, 由库仑定律电场力为 则功的元素为 所求功为 说明: 机动 目录 上页 下页 返回 结束

在底面积为 S 的圆柱形容器中盛有一定量的气 例2. 在底面积为 S 的圆柱形容器中盛有一定量的气 体, 由于气体的膨胀, 把容器中的一个面积为S 的活塞从 点 a 处移动到点 b 处 (如图), 求移动过程中气体压力所 作的功 . 解: 建立坐标系如图. 由波义耳—马略特定律知压强 p 与体积 V 成反比 , 即 故作用在活塞上的 力为 功元素为 所求功为 机动 目录 上页 下页 返回 结束

例3. 一蓄满水的圆柱形水桶高为 5 m, 底圆半径为3m, 试问要把桶中的水全部吸出需作多少功 ? 解: 建立坐标系如图. 在任一小区间 解: 建立坐标系如图. 在任一小区间 上的一薄层水的重力为 (KN) 这薄层水吸出桶外所作的功(功元素)为 故所求功为 比重现在不用了 过去: 1) 单位体积所受的重力 ; 2) 与水比的相对重量 设水的密度为 ( KJ ) 机动 目录 上页 下页 返回 结束

二、液体侧压力 设液体密度为  深为 h 处的压强: • 当平板与水面平行时, 平板一侧所受的压力为 面积为 A 的平板 • 当平板不与水面平行时, 所受侧压力问题就需用积分解决 . 机动 目录 上页 下页 返回 结束

一水平横放的半径为R 的圆桶,内盛半桶密度为 例4. 一水平横放的半径为R 的圆桶,内盛半桶密度为  的液体 , 求桶的一个端面所受的侧压力. 解: 建立坐标系如图. 所论半圆的 方程为 利用对称性 , 侧压力元素 端面所受侧压力为 小窄条上各点的压强 机动 目录 上页 下页 返回 结束

说明: 当桶内充满液体时, 小窄条上的压强为 侧压力元素 故端面所受侧压力为 奇函数 ( P350 公式67 ) 机动 目录 上页 下页 返回 结束

三、 引力问题 质量分别为 的质点 , 相距 r , 二者间的引力 : 大小: 方向: 沿两质点的连线 若考虑物体对质点的引力, 则需用积分解决 . 机动 目录 上页 下页 返回 结束

其中垂线上距 a 单位处有一质量为 m 的质点 M, 试计算 例5. 设有一长度为 l, 线密度为 的均匀细直棒, 在 其中垂线上距 a 单位处有一质量为 m 的质点 M, 试计算 该棒对质点的引力. 解: 建立坐标系如图. 细棒上小段 对质点的引力大小为 故垂直分力元素为 机动 目录 上页 下页 返回 结束

棒对质点的引力的垂直分力为 利用对称性 棒对质点引力的水平分力 故棒对质点的引力大小为 机动 目录 上页 下页 返回 结束

移到 b (a < b) 处时克服引力作的功, 说明: 1) 当细棒很长时,可视 l 为无穷大 , 此时引力大小为 方向与细棒垂直且指向细棒 . 2) 若考虑质点克服引力沿 y 轴从 a 处 移到 b (a < b) 处时克服引力作的功, 则有 机动 目录 上页 下页 返回 结束

3) 当质点位于棒的左端点垂线上时, 注意正负号 引力大小为 机动 目录 上页 下页 返回 结束

四、转动惯量 (补充) 质量为 m 的质点关于轴 l 的转动惯量为 的质点系 关于轴 l 的转动惯量为 若考虑物体的转动惯量 , 则需用积分解决 . 机动 目录 上页 下页 返回 结束

⑴ 求圆盘对通过中心与其垂直的轴的转动惯量 ; 例6. 设有一个半径为 R , 质量为 M 的均匀圆盘 , ⑴ 求圆盘对通过中心与其垂直的轴的转动惯量 ; ⑵ 求圆盘对直径所在轴的转动惯量 . 解: ⑴ 建立坐标系如图. 设圆盘面密度为 . 对应于 的小圆环对轴 l 的转动惯量为 故圆盘对轴 l 的转动惯量为 小圆环质量 机动 目录 上页 下页 返回 结束

⑵ 取旋转轴为 y 轴, 建立坐标系如图. 平行 y 轴的细条 关于 y 轴的转动惯量元素为 故圆盘对y 轴的转动惯量为 细条质量: 机动 目录 上页 下页 返回 结束

内容小结 1.用定积分求一个分布在某区间上的整体量 Q 的步骤: (1) 先用微元分析法求出它的微分表达式 dQ 一般微元的几何形状有: 条、段、环、带、 扇、片、壳 等. (2) 然后用定积分来表示整体量 Q , 并计算之. 2.定积分的物理应用: 变力作功 , 侧压力 , 引力, 转动惯量等. 机动 目录 上页 下页 返回 结束

思考与练习 1.为清除井底污泥, 用缆绳将抓斗放入井底, 抓起污 泥后提出井口, 已知井深30 m , 抓斗自重400N , 缆绳每 提升速度为3m /s , 在提升过程中污泥 以20N /s 的速度从抓斗缝隙中漏掉, 现将抓起污泥的抓斗提升到井口, 问 克服重力需作多少焦耳( J ) 功? (99考研) 提示: 作 x 轴如图. 将抓起污泥的抓斗由 x 提升 dx 所作的功为 机动 目录 上页 下页 返回 结束

井深 30 m, 抓斗自重 400 N, 缆绳每米重50N, 抓斗抓起的污泥重 2000N, 提升速度为3m∕s, 污泥以 20N∕s 的速度从抓斗缝隙中漏掉 克服抓斗自重: 克服缆绳重: 抓斗升至 x 处所需时间 : 提升抓斗中的污泥: 机动 目录 上页 下页 返回 结束

2. 设星形线 上每一点处线密 度的大小等于该点到原点距离的立方, 在点O 处有一单 位质点 , 求星形线在第一象限的弧段对这质点的引力. 提示: 如图. 机动 目录 上页 下页 返回 结束

作业: P287 2 , 3 , 5 , 9 , 12 同理 故星形线在第一象限的弧段对该质点的 引力大小为 习题课 目录 上页 下页 返回 结束

备用题 斜边为定长的直角三角形薄板, 垂直放置于 水中, 并使一直角边与水面相齐, 问斜边与水面交成的 锐角 取多大时, 薄板所受的压力 P 最大 . 解: 选取坐标系如图. 设斜边长为 l , 则其方程为 机动 目录 上页 下页 返回 结束

即 故得唯一驻点 由实际意义可知最大值存在 , 故此唯一驻点 即为所求. 机动 目录 上页 下页 返回 结束