第三节 定积分在物理学上的应用 一、 变力沿直线所作的功 二、 液体的侧压力 三、 引力问题 四、 转动惯量 (补充) 第六章 机动 目录 上页 下页 返回 结束
一、 变力沿直线所作的功 设物体在连续变力 F(x) 作用下沿 x 轴从 x=a 移动到 力的方向与运动方向平行, 求变力所做的功 . 在其上所作的功元 素为 因此变力F(x) 在区间 上所作的功为 机动 目录 上页 下页 返回 结束
位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) , 例1. 在一个带 +q 电荷所产生的电场作用下, 一个单 位正电荷沿直线从距离点电荷 a 处移动到 b 处 (a < b) , 求电场力所作的功 . 解: 当单位正电荷距离原点 r 时, 由库仑定律电场力为 则功的元素为 所求功为 说明: 机动 目录 上页 下页 返回 结束
在底面积为 S 的圆柱形容器中盛有一定量的气 例2. 在底面积为 S 的圆柱形容器中盛有一定量的气 体, 由于气体的膨胀, 把容器中的一个面积为S 的活塞从 点 a 处移动到点 b 处 (如图), 求移动过程中气体压力所 作的功 . 解: 建立坐标系如图. 由波义耳—马略特定律知压强 p 与体积 V 成反比 , 即 故作用在活塞上的 力为 功元素为 所求功为 机动 目录 上页 下页 返回 结束
例3. 一蓄满水的圆柱形水桶高为 5 m, 底圆半径为3m, 试问要把桶中的水全部吸出需作多少功 ? 解: 建立坐标系如图. 在任一小区间 解: 建立坐标系如图. 在任一小区间 上的一薄层水的重力为 (KN) 这薄层水吸出桶外所作的功(功元素)为 故所求功为 比重现在不用了 过去: 1) 单位体积所受的重力 ; 2) 与水比的相对重量 设水的密度为 ( KJ ) 机动 目录 上页 下页 返回 结束
二、液体侧压力 设液体密度为 深为 h 处的压强: • 当平板与水面平行时, 平板一侧所受的压力为 面积为 A 的平板 • 当平板不与水面平行时, 所受侧压力问题就需用积分解决 . 机动 目录 上页 下页 返回 结束
一水平横放的半径为R 的圆桶,内盛半桶密度为 例4. 一水平横放的半径为R 的圆桶,内盛半桶密度为 的液体 , 求桶的一个端面所受的侧压力. 解: 建立坐标系如图. 所论半圆的 方程为 利用对称性 , 侧压力元素 端面所受侧压力为 小窄条上各点的压强 机动 目录 上页 下页 返回 结束
说明: 当桶内充满液体时, 小窄条上的压强为 侧压力元素 故端面所受侧压力为 奇函数 ( P350 公式67 ) 机动 目录 上页 下页 返回 结束
三、 引力问题 质量分别为 的质点 , 相距 r , 二者间的引力 : 大小: 方向: 沿两质点的连线 若考虑物体对质点的引力, 则需用积分解决 . 机动 目录 上页 下页 返回 结束
其中垂线上距 a 单位处有一质量为 m 的质点 M, 试计算 例5. 设有一长度为 l, 线密度为 的均匀细直棒, 在 其中垂线上距 a 单位处有一质量为 m 的质点 M, 试计算 该棒对质点的引力. 解: 建立坐标系如图. 细棒上小段 对质点的引力大小为 故垂直分力元素为 机动 目录 上页 下页 返回 结束
棒对质点的引力的垂直分力为 利用对称性 棒对质点引力的水平分力 故棒对质点的引力大小为 机动 目录 上页 下页 返回 结束
移到 b (a < b) 处时克服引力作的功, 说明: 1) 当细棒很长时,可视 l 为无穷大 , 此时引力大小为 方向与细棒垂直且指向细棒 . 2) 若考虑质点克服引力沿 y 轴从 a 处 移到 b (a < b) 处时克服引力作的功, 则有 机动 目录 上页 下页 返回 结束
3) 当质点位于棒的左端点垂线上时, 注意正负号 引力大小为 机动 目录 上页 下页 返回 结束
四、转动惯量 (补充) 质量为 m 的质点关于轴 l 的转动惯量为 的质点系 关于轴 l 的转动惯量为 若考虑物体的转动惯量 , 则需用积分解决 . 机动 目录 上页 下页 返回 结束
⑴ 求圆盘对通过中心与其垂直的轴的转动惯量 ; 例6. 设有一个半径为 R , 质量为 M 的均匀圆盘 , ⑴ 求圆盘对通过中心与其垂直的轴的转动惯量 ; ⑵ 求圆盘对直径所在轴的转动惯量 . 解: ⑴ 建立坐标系如图. 设圆盘面密度为 . 对应于 的小圆环对轴 l 的转动惯量为 故圆盘对轴 l 的转动惯量为 小圆环质量 机动 目录 上页 下页 返回 结束
⑵ 取旋转轴为 y 轴, 建立坐标系如图. 平行 y 轴的细条 关于 y 轴的转动惯量元素为 故圆盘对y 轴的转动惯量为 细条质量: 机动 目录 上页 下页 返回 结束
内容小结 1.用定积分求一个分布在某区间上的整体量 Q 的步骤: (1) 先用微元分析法求出它的微分表达式 dQ 一般微元的几何形状有: 条、段、环、带、 扇、片、壳 等. (2) 然后用定积分来表示整体量 Q , 并计算之. 2.定积分的物理应用: 变力作功 , 侧压力 , 引力, 转动惯量等. 机动 目录 上页 下页 返回 结束
思考与练习 1.为清除井底污泥, 用缆绳将抓斗放入井底, 抓起污 泥后提出井口, 已知井深30 m , 抓斗自重400N , 缆绳每 提升速度为3m /s , 在提升过程中污泥 以20N /s 的速度从抓斗缝隙中漏掉, 现将抓起污泥的抓斗提升到井口, 问 克服重力需作多少焦耳( J ) 功? (99考研) 提示: 作 x 轴如图. 将抓起污泥的抓斗由 x 提升 dx 所作的功为 机动 目录 上页 下页 返回 结束
井深 30 m, 抓斗自重 400 N, 缆绳每米重50N, 抓斗抓起的污泥重 2000N, 提升速度为3m∕s, 污泥以 20N∕s 的速度从抓斗缝隙中漏掉 克服抓斗自重: 克服缆绳重: 抓斗升至 x 处所需时间 : 提升抓斗中的污泥: 机动 目录 上页 下页 返回 结束
2. 设星形线 上每一点处线密 度的大小等于该点到原点距离的立方, 在点O 处有一单 位质点 , 求星形线在第一象限的弧段对这质点的引力. 提示: 如图. 机动 目录 上页 下页 返回 结束
作业: P287 2 , 3 , 5 , 9 , 12 同理 故星形线在第一象限的弧段对该质点的 引力大小为 习题课 目录 上页 下页 返回 结束
备用题 斜边为定长的直角三角形薄板, 垂直放置于 水中, 并使一直角边与水面相齐, 问斜边与水面交成的 锐角 取多大时, 薄板所受的压力 P 最大 . 解: 选取坐标系如图. 设斜边长为 l , 则其方程为 机动 目录 上页 下页 返回 结束
即 故得唯一驻点 由实际意义可知最大值存在 , 故此唯一驻点 即为所求. 机动 目录 上页 下页 返回 结束