光学信息技术原理及应用 (五) 总结与习题.

Slides:



Advertisements
Similar presentations
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
第 6 章 傅立叶变换  6.1 傅立叶积分 6.1 傅立叶积分  6.2 傅立叶变换 6.2 傅立叶变换  6.3 函数及其傅立叶变换 6.3 函数及其傅立叶变换  6.4 傅立叶变换的性质 6.4 傅立叶变换的性质.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
碰撞 两物体互相接触时间极短而互作用力较大
第六章 Fourier变换法.
第2章 时域离散信号和系统的频域分析 教学内容包括: 序列的傅立叶变换定义及性质 Z变换的定义与收敛域 利用z变换分析信号和系统的频域特性.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
CH 6 傅里叶积分变换 1、傅立叶积分 傅立叶变换 2、 3、傅立叶变换的性质 4、卷积及傅立叶变换的应用.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
2-7、函数的微分 教学要求 教学要点.
第7章 离散信号的频域分析 离散Fourier级数 离散Fourier变换 第3章 连续信号的频域分析 连续Fourier级数
C++中的声音处理 在传统Turbo C环境中,如果想用C语言控制电脑发声,可以用Sound函数。在VC6.6环境中如果想控制电脑发声则采用Beep函数。原型为: Beep(频率,持续时间) , 单位毫秒 暂停程序执行使用Sleep函数 Sleep(持续时间), 单位毫秒 引用这两个函数时,必须包含头文件
信号与系统基础 (二) 王烁
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
第二章 傅立叶变换 §2.1 周期信号的频谱分析(傅立叶级数) §2.2 典型周期信号的频谱 §2.3 非周期信号的频谱(傅立叶变换)
计算机数学基础 主讲老师: 邓辉文.
Chapter 3 Discrete Fourier-Transform (Part Ⅰ)
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
实验六 积分器、微分器.
数字信号处理 Lecture 4: Analysis of Discrete-time System 杨再跃
实验一: 信号、 系统及系统响应 1、实验目的 1 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第 3 章 傅里叶变换.
第一章 函数与极限.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
光学传递函数实验 姚焜 大学物理实验.
2019/5/2 实验一 离散傅立叶变换的性质及应用 实验报告上传到“作业提交”。 08:20:28.
2019/5/4 实验三 离散傅立叶变换的性质及应用 06:11:49.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
光学信息技术原理及应用 (二) 常用函数 卷积与相关.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
2019/5/21 实验一 离散傅立叶变换的性质及应用 实验报告上传到“作业提交”。 11:21:44.
正弦函数图象是怎样画的? 正切函数是不是周期函数? 正切函数的定义域是什么? y=tanx,xR, 的图象 叫做正切曲线;
1.4.3正切函数的图象及性质.
1.4.3正切函数的图象及性质.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
§2 方阵的特征值与特征向量.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
正弦函数的性质与图像.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
1.4.1正弦函数、余弦函数的图象.
1.4.1正弦函数、余弦函数的图象.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
Presentation transcript:

光学信息技术原理及应用 (五) 总结与习题

傅里叶变换(熟练掌握) (傅立叶变换) (傅立叶逆变换)

傅里叶变换定理(1)(运用) (1)线性定理:如果 则有 (2)相似性定理:如果

傅里叶变换定理(2) (3)位移定理:如果 则有,函数在空域中的平移,带来频域中的相移 同时,函数在空域中的相移,带来频域中的平移

傅里叶变换定理(2) (4)帕色伐(Parseval)定理:如果 则有: 该定理表明信号在空域和时域的能量守恒。

δ函数的基本性质和物理意义(重点理解)

常用函数及其傅里叶变换(1) (1)常数c (2) 函数 (3)余弦函数 (4)正弦函数

常用函数及其傅里叶变换(3) (5)矩形函数 表示狭缝 (6)三角形函数 表示矩形光 瞳OTF

常用函数及其傅里叶变换(4) (7)梳状函数 用来表示光栅,抽样 (8)高斯函数 用于表示激光光束光强分布

卷积的定义及计算(掌握) 对于两个复值函数 和 , 其卷积定义为 式中*表示卷积运算。

卷积过程图示(1) 原函数 折叠 位移 相乘—得到被积函数

包含δ函数的卷积----函数的移位 原点处的篩选性质有 任意函数和位于 处的脉冲函数的卷积得到 任意函数和位于 处的脉冲函数的卷积得到 这个性质有助于对于重复的物理结构的描述,如光栅、双缝等

线性空不变系统的传递函数(理解计算 如果不变线性系统的输入是空域函数,其傅里叶变换为 同时输出函数和脉冲响应函数的傅里叶变换分别为 根据卷积定理有 即 称做不变线性系统的的传递函数

抽样定理(理解掌握) 假如函数 是限带函数,即它的频谱仅在频率平面上一个有限区域内不为零 假如函数 是限带函数,即它的频谱仅在频率平面上一个有限区域内不为零 若包围该区域的最小矩形在 和 方向上的宽度分别为 和 欲使图中周期性复现的函数频谱不会相互混叠,必须使 或者说抽样间隔必须满足 式中表示的两方向上的最大抽样间距和通常称作奈奎斯特(Nyquist)抽样间隔

习题1 1.给定正实常数f0和实常数a与b,求证: (1)若 ,则 (2)若 ,则 ,

证明: (1)对等式左边取傅里叶变换得: 在频谱面上一个有限的区域中不为0,包围该区域的最小矩形在f方向上的宽度为2f0, 滤波函数的宽度为 ,由题意可知2f0< 故满足采样定理,能够准确恢复原函数 命题得证。

(2) 由|b|<|a|可知 ,故上式

2. 已知线性不变系统的输入为 ,系统的传 递函数为 ,若b取下列数值,求系统的输出。 并画出输出函数及其频谱的图形。 (1)b=1 (2)b=3

解: 当b=1时, 当b=3时,

3. 一个二维的物函数f(x,y),在空域中尺寸为 10 3.一个二维的物函数f(x,y),在空域中尺寸为 10*10mm2,最高空间频率为5线/mm, 若要制作一张傅里叶变换计算全息图,物面上最少的 抽样点数为多少?

解:由于物函数的最高空间频率为5线/mm,即其最大带 宽。 根据抽样定理,若限带函数在频域中 以外恒为0,函数在空域中 范围内抽样 数至少为 由题意可知,X=Y=5mm, 线/mm