第6章 MATLAB数据分析与多项式计算 6.1 数据统计处理 6.2 数据插值 6.3 曲线拟合 6.4 离散傅立叶变换

Slides:



Advertisements
Similar presentations
数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
第3章 MATLAB数值计算 2017/9/9.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
不确定度的传递与合成 间接测量结果不确定度的评估
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
Matlab 中IIR数字滤波器设计相关函数
西南科技大学网络教育系列课程 数学软件 数学软件 第5讲 MATLAB数值计算二 主讲教师: 鲜大权 副教授 西南科技大学理学院数学系.
第二章 矩阵(matrix) 第8次课.
线性代数机算与应用 李仁先 2018/11/24.
元素替换法 ——行列式按行(列)展开(推论)
导数的基本运算.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
MATLAB及其应用 第三讲 数据处理 授课人:鲍文 在此幻灯片插入公司的徽标 从“插入”菜单 选择图片 找到徽标文件 单击“确定”
数学软件 Matlab —— 矩阵运算.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
Matlab 选讲 二 上海交通大学数学系 刘小军
第三单元 第4课 Matlab数据插值 1.一维插值 2.二维插值 3.对非网格数据进行插值.
一.多项式构造及其运算 1、多项式构造 poly2str(p,’x’) 将表示多项式系数的行向量p转换为变量是x的多项式形式。
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
数列.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第六章 Excel的应用 一、Excel的单元格与区域 1、单元格:H8, D7, IV26等 2、区域:H2..D8, HS98:IT77
第4章 Excel电子表格制作软件 4.4 函数(一).
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第4课时 绝对值.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第七、八次实验要求.
建模常见问题MATLAB求解  .
2.2矩阵的代数运算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
2019/5/21 实验一 离散傅立叶变换的性质及应用 实验报告上传到“作业提交”。 11:21:44.
第六讲 数据处理方法 与多项式.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
§2 方阵的特征值与特征向量.
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
数学模型实验课(二) 最小二乘法与直线拟合.
§4.5 最大公因式的矩阵求法( Ⅱ ).
Matlab插值与拟合 插值 拟合.
9.3多项式乘多项式.
Presentation transcript:

第6章 MATLAB数据分析与多项式计算 6.1 数据统计处理 6.2 数据插值 6.3 曲线拟合 6.4 离散傅立叶变换 6.5 多项式计算

6.1 数据统计处理 6.1.1 最大值和最小值 MATLAB提供的求数据序列的最大值和最小值的函数分别为max和min,两个函数的调用格式和操作过程类似。 1.求向量的最大值和最小值 求一个向量X的最大值的函数有两种调用格式,分别是: (1) y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。

(2) [y,I]=max(X):返回向量X的最大值存入y,最大值的序号存入I,如果X中包含复数元素,则按模取最大值。 求向量X的最小值的函数是min(X),用法和max(X)完全相同。 例6-1 求向量x的最大值。 命令如下: x=[-43,72,9,16,23,47]; y=max(x) %求向量x中的最大值 [y,l]=max(x) %求向量x中的最大值及其该元素的位置

2.求矩阵的最大值和最小值 求矩阵A的最大值的函数有3种调用格式,分别是: (1) max(A):返回一个行向量,向量的第i个元素是矩阵A的第i列上的最大值。 (2) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列的最大值,U向量记录每列最大值的行号。

(3) max(A,[],dim):dim取1或2。dim取1时,该函数和max(A)完全相同;dim取2时,该函数返回一个列向量,其第i个元素是A矩阵的第i行上的最大值。 求最小值的函数是min,其用法和max完全相同。 例6-2 分别求3×4矩阵x中各列和各行元素中的最大值,并求整个矩阵的最大值和最小值。

3.两个向量或矩阵对应元素的比较 函数max和min还能对两个同型的向量或矩阵进行比较,调用格式为: (1) U=max(A,B):A,B是两个同型的向量或矩阵,结果U是与A,B同型的向量或矩阵,U的每个元素等于A,B对应元素的较大者。 (2) U=max(A,n):n是一个标量,结果U是与A同型的向量或矩阵,U的每个元素等于A对应元素和n中的较大者。 min函数的用法和max完全相同。 例6-3 求两个2×3矩阵x, y所有同一位置上的较大元素构成的新矩阵p。

6.1.2 求和与求积 数据序列求和与求积的函数是sum和prod,其使用方法类似。设X是一个向量,A是一个矩阵,函数的调用格式为: sum(X):返回向量X各元素的和。 prod(X):返回向量X各元素的乘积。 sum(A):返回一个行向量,其第i个元素是A的第i列的元素和。

prod(A):返回一个行向量,其第i个元素是A的第i列的元素乘积。 sum(A,dim):当dim为1时,该函数等同于sum(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素之和。 prod(A,dim):当dim为1时,该函数等同于prod(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的各元素乘积。 例6-4 求矩阵A的每行元素的乘积和全部元素的乘积。

6.1.3 平均值和中值 求数据序列平均值的函数是mean,求数据序列中值的函数是median。两个函数的调用格式为: mean(X):返回向量X的算术平均值。 median(X):返回向量X的中值。 mean(A):返回一个行向量,其第i个元素是A的第i列的算术平均值。 median(A):返回一个行向量,其第i个元素是A的第i列的中值。 mean(A,dim):当dim为1时,该函数等同于mean(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的算术平均值。 median(A,dim):当dim为1时,该函数等同于median(A);当dim为2时,返回一个列向量,其第i个元素是A的第i行的中值。 例6-5 分别求向量x与y的平均值和中值。

6.1.4 累加和与累乘积 在MATLAB中,使用cumsum和cumprod函数能方便地求得向量和矩阵元素的累加和与累乘积向量,函数的调用格式为: cumsum(X):返回向量X累加和向量。 cumprod(X):返回向量X累乘积向量。 cumsum(A):返回一个矩阵,其第i列是A的第i列的累加和向量。 cumprod(A):返回一个矩阵,其第i列是A的第i列的累乘积向量。 cumsum(A,dim):当dim为1时,该函数等同于cumsum(A);当dim为2时,返回一个矩阵,其第i行是A的第i行的累加和向量。 cumprod(A,dim):当dim为1时,该函数等同于cumprod(A);当dim为2时,返回一个向量,其第i行是A的第i行的累乘积向量。 例6-6 求s的值。

6.1.5 标准方差与相关系数 1.求标准方差 在MATLAB中,提供了计算数据序列的标准方差的函数std。对于向量X,std(X)返回一个标准方差。对于矩阵A,std(A)返回一个行向量,它的各个元素便是矩阵A各列或各行的标准方差。std函数的一般调用格式为: Y=std(A,flag,dim) 其中dim取1或2。当dim=1时,求各列元素的标准方差;当dim=2时,则求各行元素的标准方差。flag取0或1,当flag=0时,按σ1所列公式计算标准方差,当flag=1时,按σ2所列公式计算标准方差。缺省flag=0,dim=1。 例6-7 对二维矩阵x,从不同维方向求出其标准方差。

2.相关系数 MATLAB提供了corrcoef函数,可以求出数据的相关系数矩阵。corrcoef函数的调用格式为: corrcoef(X):返回从矩阵X形成的一个相关系数矩阵。此相关系数矩阵的大小与矩阵X一样。它把矩阵X的每列作为一个变量,然后求它们的相关系数。 corrcoef(X,Y):在这里,X,Y是向量,它们与corrcoef([X,Y])的作用一样。

例6-8 生成满足正态分布的10000×5随机矩阵,然后求各列元素的均值和标准方差,再求这5列随机数据的相关系数矩阵。 命令如下: X=randn(10000,5); M=mean(X) D=std(X) R=corrcoef(X)

6.1.6 排序 MATLAB中对向量X是排序函数是sort(X),函数返回一个对X中的元素按升序排列的新向量。 sort函数也可以对矩阵A的各列或各行重新排序,其调用格式为: [Y,I]=sort(A,dim) 其中dim指明对A的列还是行进行排序。若dim=1,则按列排;若dim=2,则按行排。Y是排序后的矩阵,而I记录Y中的元素在A中位置。

例6-9 对二维矩阵做各种排序。 6.2 数据插值 6.2.1 一维数据插值 在MATLAB中,实现这些插值的函数是interp1,其调用格式为: Y1=interp1(X,Y,X1,'method') 函数根据X,Y的值,计算函数在X1处的值。X,Y是两个等长的已知向量,分别描述采样点和样本值,X1是一个向量或标量,描述欲插值的点,Y1是一个与X1等长的插值结果。method是插值方法,允许的取值有‘linear’、‘nearest’、‘cubic’、‘spline’。

注意:X1的取值范围不能超出X的给定范围,否则,会给出“NaN”错误。 例6-10 用不同的插值方法计算在π/2点的值。 MATLAB中有一个专门的3次样条插值函数Y1=spline(X,Y,X1),其功能及使用方法与函数Y1=interp1(X,Y,X1,‘spline’)完全相同。

例6-11 某观测站测得某日6:00时至18:00时之间每隔2小时的室内外温度(℃),用3次样条插值分别求得该日室内外6:30至17:30时之间每隔2小时各点的近似温度(℃)。 设时间变量h为一行向量,温度变量t为一个两列矩阵,其中第一列存放室内温度,第二列储存室外温度。命令如下: h =6:2:18; t=[18,20,22,25,30,28,24;15,19,24,28,34,32,30]'; XI =6.5:2:17.5 YI=interp1(h,t,XI,‘spline’) %用3次样条插值计算

6.2.2 二维数据插值 在MATLAB中,提供了解决二维插值问题的函数interp2,其调用格式为: Z1=interp2(X,Y,Z,X1,Y1,'method') 其中X,Y是两个向量,分别描述两个参数的采样点,Z是与参数采样点对应的函数值,X1,Y1是两个向量或标量,描述欲插值的点。Z1是根据相应的插值方法得到的插值结果。 method的取值与一维插值函数相同。X,Y,Z也可以是矩阵形式。 同样,X1,Y1的取值范围不能超出X,Y的给定范围,否则,会给出“NaN”错误。

例6-12 设z=x2+y2,对z函数在[0,1]×[0,2]区域内进行插值。 例6-13 某实验对一根长10米的钢轨进行热源的温度传播测试。用x表示测量点0:2.5:10(米),用h表示测量时间0:30:60(秒),用T表示测试所得各点的温度(℃)。试用线性插值求出在一分钟内每隔20秒、钢轨每隔1米处的温度TI。 命令如下: x=0:2.5:10; h=[0:30:60]'; T=[95,14,0,0,0;88,48,32,12,6;67,64,54,48,41]; xi=[0:10]; hi=[0:20:60]'; TI=interp2(x,h,T,xi,hi)

6.3 曲线拟合 在MATLAB中,用polyfit函数来求得最小二乘拟合多项式的系数,再用polyval函数按所得的多项式计算所给出的点上的函数近似值。 polyfit函数的调用格式为: [P,S]=polyfit(X,Y,m) 函数根据采样点X和采样点函数值Y,产生一个m次多项式P及其在采样点的误差向量S。其中X,Y是两个等长的向量,P是一个长度为m+1的向量,P的元素为多项式系数。 polyval函数的功能是按多项式的系数计算x点多项式的值,将在6.5.3节中详细介绍。

例6-14 已知数据表[t,y],试求2次拟合多项式p(t),然后求ti=1,1.5,2,2.5,…,9.5,10各点的函数近似值。

6.4 离散傅立叶变换 6.4.1 离散傅立叶变换算法简要 6.4.2 离散傅立叶变换的实现 一维离散傅立叶变换函数,其调用格式与功能为: (1) fft(X):返回向量X的离散傅立叶变换。设X的长度(即元素个数)为N,若N为2的幂次,则为以2为基数的快速傅立叶变换,否则为运算速度很慢的非2幂次的算法。对于矩阵X,fft(X)应用于矩阵的每一列。

(2) fft(X,N):计算N点离散傅立叶变换。它限定向量的长度为N,若X的长度小于N,则不足部分补上零;若大于N,则删去超出N的那些元素。对于矩阵X,它同样应用于矩阵的每一列,只是限定了向量的长度为N。 (3) fft(X,[],dim)或fft(X,N,dim):这是对于矩阵而言的函数调用格式,前者的功能与FFT(X)基本相同,而后者则与FFT(X,N)基本相同。只是当参数dim=1时,该函数作用于X的每一列;当dim=2时,则作用于X的每一行。

值得一提的是,当已知给出的样本数N0不是2的幂次时,可以取一个N使它大于N0且是2的幂次,然后利用函数格式fft(X,N)或fft(X,N,dim)便可进行快速傅立叶变换。这样,计算速度将大大加快。 相应地,一维离散傅立叶逆变换函数是ifft。ifft(F)返回F的一维离散傅立叶逆变换;ifft(F,N)为N点逆变换;ifft(F,[],dim)或ifft(F,N,dim)则由N或dim确定逆变换的点数或操作方向。

例6-15 给定数学函数 x(t)=12sin(2π×10t+π/4)+5cos(2π×40t) 取N=128,试对t从0~1秒采样,用fft作快速傅立叶变换,绘制相应的振幅-频率图。 在0~1秒时间范围内采样128点,从而可以确定采样周期和采样频率。由于离散傅立叶变换时的下标应是从0到N-1,故在实际应用时下标应该前移1。又考虑到对离散傅立叶变换来说,其振幅| F(k)|是关于N/2对称的,故只须使k从0到N/2即可。

程序如下: N=128; % 采样点数 T=1; % 采样时间终点 t=linspace(0,T,N); % 给出N个采样时间ti(I=1:N) x=12*sin(2*pi*10*t+pi/4)+5*cos(2*pi*40*t); % 求各采样点样本值x dt=t(2)-t(1); % 采样周期 f=1/dt; % 采样频率(Hz) X=fft(x); % 计算x的快速傅立叶变换X F=X(1:N/2+1); % F(k)=X(k)(k=1:N/2+1) f=f*(0:N/2)/N; % 使频率轴f从零开始 plot(f,abs(F),'-*') % 绘制振幅-频率图 xlabel('Frequency'); ylabel('|F(k)|')

6.5 多项式计算 6.5.1 多项式的四则运算 1.多项式的加减运算 2.多项式乘法运算 函数conv(P1,P2)用于求多项式P1和P2的乘积。这里,P1、P2是两个多项式系数向量。 例6-16 求多项式x4+8x3-10与多项式2x2-x+3的乘积。

3.多项式除法 函数[Q,r]=deconv(P1,P2)用于对多项式P1和P2作除法运算。其中Q返回多项式P1除以P2的商式,r返回P1除以P2的余式。这里,Q和r仍是多项式系数向量。 deconv是conv的逆函数,即有P1=conv(P2,Q)+r。

例6-17 求多项式x4+8x3-10除以多项式2x2-x+3的结果。 6.5.2 多项式的导函数 对多项式求导数的函数是: p=polyder(P):求多项式P的导函数 p=polyder(P,Q):求P·Q的导函数 [p,q]=polyder(P,Q):求P/Q的导函数,导函数的分子存入p,分母存入q。 上述函数中,参数P,Q是多项式的向量表示,结果p,q也是多项式的向量表示。

例6-18 求有理分式的导数。 命令如下: P=[1]; Q=[1,0,5]; [p,q]=polyder(P,Q)

6.5.3 多项式的求值 MATLAB提供了两种求多项式值的函数:polyval与polyvalm,它们的输入参数均为多项式系数向量P和自变量x。两者的区别在于前者是代数多项式求值,而后者是矩阵多项式求值。

1.代数多项式求值 polyval函数用来求代数多项式的值,其调用格式为: Y=polyval(P,x) 若x为一数值,则求多项式在该点的值;若x为向量或矩阵,则对向量或矩阵中的每个元素求其多项式的值。 例6-19 已知多项式x4+8x3-10,分别取x=1.2和一个2×3矩阵为自变量计算该多项式的值。

2.矩阵多项式求值 polyvalm函数用来求矩阵多项式的值,其调用格式与polyval相同,但含义不同。polyvalm函数要求x为方阵,它以方阵为自变量求多项式的值。设A为方阵,P代表多项式x3-5x2+8,那么polyvalm(P,A)的含义是: A*A*A-5*A*A+8*eye(size(A)) 而polyval(P,A)的含义是: A.*A.*A-5*A.*A+8*ones(size(A)) 例6-20 仍以多项式x4+8x3-10为例,取一个2×2矩阵为自变量分别用polyval和polyvalm计算该多项式的值。

6.5.4 多项式求根 n次多项式具有n个根,当然这些根可能是实根,也可能含有若干对共轭复根。MATLAB提供的roots函数用于求多项式的全部根,其调用格式为: x=roots(P) 其中P为多项式的系数向量,求得的根赋给向量x,即x(1),x(2),…,x(n)分别代表多项式的n个根。

例6-21 求多项式x4+8x3-10的根。 命令如下: A=[1,8,0,0,-10]; x=roots(A) 若已知多项式的全部根,则可以用poly函数建立起该多项式,其调用格式为: P=poly(x) 若x为具有n个元素的向量,则poly(x)建立以x为其根的多项式,且将该多项式的系数赋给向量P。

例6-22 已知 f(x) (1) 计算f(x)=0 的全部根。 (2) 由方程f(x)=0的根构造一个多项式g(x),并与f(x)进行对比。 命令如下: P=[3,0,4,-5,-7.2,5]; X=roots(P) %求方程f(x)=0的根 G=poly(X) %求多项式g(x)