3.2 导数的计算.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
1 主要内容 : 1. 微分的概念. 2. 微分的几何意义. 3. 微分的运算 4. 微分在近似计算中的应用 2.5 微分.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
1 第八章 不 定 积 分 §1 不定积分概念与基本积分公式 教学内容: 1 )不定积分的概念 2 )不定积分与微分的关系 3 )不定积分的基本积分公式 4 )不定积分的线性性质 重点:不定积分与微分的关系,基本积分公式 要求:熟记基本积分公式和不定积分的线性性质.
第三章 导数与微分 第二节 求导法则 第三节 微分及其在近似计算中的应用 微分及其在近似计算中的应用 第一节 导数的概念.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
§1 导数的概念 §1 导数的概念 §2 求导法则 §2 求导法则 §3 参变量函数的导数 §3 参变量函数的导数 §4 高阶导数 §4 高阶导数 §5 微分§5 微分.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
§1. 导数的概念 1. 什么是导数(值)?如何表示? 2. 导数的几何意义? 3. 函数可导与连续的关系?(了解) §2. 导数的基本运算法则 反函数的求导法则? §3. 导数的基本公式.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
成才之路 · 数学 人教A版 · 选修2-2 路漫漫其修远兮 吾将上下而求索.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第二部分 积分学 第1章 不定积分 教学要求、重点、难点、内容结构
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 第一节 导数的概念 第二节 求导法则 第三节 微分及其在近似计算中的应用.
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
导数的基本运算.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Math2-4 内容预告 授 课 内 容 取对数求导法 导数基本公式 高阶导数 同学们好 现在开始上课 Math2-4.
2.3.2 抛物线的简单几何性质.
高等数学 西华大学应用数学系朱雯.
3.2.2 用向量方法求空间中的角.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
3.1.3 导数的几何意义.
(1)求函数的增量Δf=Δy=f(x2)-f(x1); (2)计算平均变化率
3.1.3 导数的几何意义.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
3.2 导数的计算.
2.4.2 抛物线的简单几何性质.
3.2.2 复数代数形式的乘除运算.
高中数学选修 导数的计算.
3.3.2《导数在研究函数 中的应用-极值》.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
几种常见函数的 导 数.
二次函数与一元二次方程 初三数学组.
3.1.5 空间向量运算的坐标表示.
2.3 抛物线   2.3.1 抛物线及其标准方程.
2.2.2 椭圆的简单几何性质  第一课时 椭圆的简单几何性质.
1.4.1正弦函数、余弦函数的图象.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
3.3 导数在研究函数中的应用   3.3.1 函数的单调性与导数.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
2.2 椭 圆 椭圆及其标准方程.
Presentation transcript:

3.2 导数的计算

学习目标

课前自主学案 3.2 课堂互动讲练 知能优化训练

课前自主学案 温故夯基 f(x+Δx)-f(x)

知新益能 1.基本初等函数的导数公式 原函数 导函数 f(x)=c f′(x)=___ f(x)=xn(n∈Q*) f′(x)=______ f(x)=sinx f′(x)=_____ f(x)=cosx f′(x)=_______ f(x)=ax(a>0) f′(x)=___________ nxn-1 cosx -sinx axlna(a>0)

ex

f′(x)±g′(x) f′(x)g(x)+f(x)g′(x)

问题探究 提示:不正确.

课堂互动讲练 考点突破 求函数的导数 解决函数的求导问题,应先分析所给函数的结构特点,选择正确的公式和法则,对较为复杂的求导运算,一般综合了和、差、积、商几种运算,在求导之前应先将函数化简,然后求导,以减少运算量.

【思路点拨】 观察各函数的结构特征,利用导数公式,先变形,再求导. 例1 【思路点拨】 观察各函数的结构特征,利用导数公式,先变形,再求导.

已知导数值求参数值 由函数f(x)的导数值确定其参数值,要正确求解f(x)的导数,利用其他条件列出等式关系,再求解.

【思路点拨】 由题意建立导数值与函数值互为相反数的关系式,即可求出c的值. 例2 【思路点拨】 由题意建立导数值与函数值互为相反数的关系式,即可求出c的值.

曲线的切线方程 利用导数的几何意义解决切线问题的关键是判断已知点是否是切点.若已知点是切点,则该点处的切线斜率就是该点处的导数;如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解.

已知抛物线y=ax2+bx+c通过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a、b、c的值. 例3 【思路点拨】 题中涉及三个未知量,已知三个独立条件,因此,要通过解方程组来确定a、b、c的值.

【名师点评】 本题巧妙地利用导数的几何意义,即切线的斜率建立了未知参数的方程,使问题轻松解决.另外,本题还考查了导数的公式、点和曲线的位置关系等知识.

方法感悟

知能优化训练

本部分内容讲解结束 按ESC键退出全屏播放 点此进入课件目录 谢谢使用