§7.2需求函数(Demand Function,D.F.)

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第四节 复合函数求导 法则及其应用 一、复合函数求导法则 二、初等函数的求导问题 三、一阶微分的形式不变性 四、隐函数的导数 五、对数求导法 六、参数形式的函数的求导公式.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
《高等数学》(理学) 常数项级数的概念 袁安锋
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
不确定度的传递与合成 间接测量结果不确定度的评估
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
管理信息结构SMI.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
Online job scheduling in Distributed Machine Learning Clusters
第十章 方差分析.
数据挖掘工具性能比较.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
模型分类问题 Presented by 刘婷婷 苏琬琳.
线性规 Linear Programming
WPT MRC. WPT MRC 由题目引出的几个问题 1.做MRC-WPT的多了,与其他文章的区别是什么? 2.Charging Control的手段是什么? 3.Power Reigon是什么东西?
Cassandra应用及高性能客户端 董亚军 来自Newegg-NESC.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第六章 Excel的应用 一、Excel的单元格与区域 1、单元格:H8, D7, IV26等 2、区域:H2..D8, HS98:IT77
第4章 Excel电子表格制作软件 4.4 函数(一).
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
建模常见问题MATLAB求解  .
导 言 经济学的基本问题 经济学的基本研究方法 需求和供给.
高中数学选修 导数的计算.
概率论与数理统计B.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
§2 方阵的特征值与特征向量.
基于列存储的RDF数据管理 朱敏
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
线性规划 Linear Programming
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

§7.2需求函数(Demand Function,D.F.) 几个重要概念 几种重要的单方程需求函数模型及其参数估计 线性支出系统需求函数模型及其参数估计 几种需求函数模型系统 建立与应用需求函数模型中的几个问题

一、几个重要概念

⒈ 需求函数 ⑴ 定义 需求函数是描述商品的需求量与影响因素,例如收入、价格、其它商品的价格等之间关系的数学表达式。 特定情况下可以引入其它因素。

需求函数与消费函数是两个完全不同的概念。为什么? 单方程需求函数模型和需求函数模型系统 哪类更符合需求行为理论?

⑵ 单方程需求函数模型是经验的产物 与需求行为理论不符 经常引入其它因素 参数的经济意义不明确

⑶ 需求函数模型系统来源于效用函数 由效用函数在效用最大化下导出,符合需求行为理论 只包括收入和价格 参数有明确的经济意义

⒉ 从效用函数到需求函数 ⑴ 从直接效用函数到需求函数 直接效用函数为: 预算约束为: 在预算约束下使效用最大,即得到需求函数模型。

构造如下的拉格朗日函数: 极值的一阶条件: 求解即得到需求函数模型。

⑵ 从间接效用函数到需求函数 间接效用函数为: 利用公式 可以得到所求的使效用达到最大的商品需求函数。

⒊ 需求函数的0阶齐次性 ⑴ 需求的收入弹性 生活必须品的需求收入弹性? 高档消费品的需求收入弹性? 低质商品的的需求收入弹性?

⑵ 需求的自价格弹性 生活必须品的需求自价格弹性? 高档消费品的需求自价格弹性? “吉芬品” 的的需求收入弹性?

⑶ 需求的互价格弹性 替代品的需求互价格弹性? 互补品的需求互价格弹性? 互相独立商品的需求互价格弹性?

⑷ 需求函数的0阶齐次性条件 当收入、价格、其它商品的价格等都增长倍时,对商品的需求量没有影响。即 需求函数模型的重要特征 模型的检验

二、几种重要的单方程需求函数模型及其参数估计

⒈ 线性需求函数模型 经验中存在 缺少合理的经济解释 不满足0阶齐次性条件 OLS估计

⒉ 对数线性需求函数模型 经验中比较普遍存在 参数有明确的经济意义 每个参数的经济意义和数值范围? 可否用0阶齐次性条件检验? OLS估计

⒊ 耐用品的存量调整模型 导出过程

常用于估计的模型形式 直接估计。 参数估计量的经济意义不明确 。 必须反过来求得原模型中的每个参数估计量,才有明确的经济意义。 由4个参数估计量求原模型的5个参数估计量,必须外生给定δ。

⒋ 非耐用品的状态调整模型 Houthakker和Taylor于1970年建议。 反映消费习惯等“心理存量”对需求的影响 。 用上一期的实际实现了的需求(即消费)量作为“心理存量”的样本观测值。

三、线性支出系统需求函数模型及其参数估计 (LES,Linear Expenditure System)

⒈ 线性支出系统需求函数模型 Klein、Rubin 1947年 直接效用函数 该效用函数的含义? R.Stone、1954年 在预算约束 导出需求函数

拉格朗日方程 极值条件

对于前n个方程,消去λ可得

LES是一个联立方程模型系统 函数的经济意义 参数的经济意义 模型系统估计的困难是什么?

⒉ 扩展的线性支出系统需求函数模型 (ELES, Expend Linear Expenditure System) ⑴ 模型的扩展 1973年 Liuch 两点扩展 扩展后参数的经济意义发生了什么变化? 为什么扩展后的模型可以估计?

⑵ 扩展的线性支出系统的0阶齐次性证明

⒊ 扩展的线性支出系统需求函数模型的估计 方法 ⒊ 扩展的线性支出系统需求函数模型的估计 方法 ⑴ 迭代法 首先改写成如下形式: (1) 其中

再改写成如下形式: (2)

采用OLS估计(1),得到基本需求量r的第一次估计值; 代入(2)中,计算Z和W的样本观测值; 采用OLS估计(2),得到b的第一次估计值; 迭代过程 给定一组边际消费倾向b的初始值; 计算(1)中X的样本观测值; 采用OLS估计(1),得到基本需求量r的第一次估计值; 代入(2)中,计算Z和W的样本观测值; 采用OLS估计(2),得到b的第一次估计值; 重复该过程,直至两次迭代得到的参数估计值满足收敛条件为止。即完成了模型的估计。

采用OLS估计(1)时,应该首先将个方程相加,然后对相加得到的方程进行最小二乘估计。为什么? 首先给定b的初始值与首先给定r的初始值,不影响估计结果。为什么?

⑵ 截面数据作样本时的最小二乘法 利用截面上价格相同,写成: 对模型采用普通最小二乘法进行估计,得到: 然后利用参数之间的关系计算

四、几种需求函数模型系统

⒈ Rotterdam模型 Theil和Barten于1965、1966年采用对数线性需求函数的微分形式,描述需求量、收入、价格的相对变化之间的关系。 用ML法估计

⒉超越对数需求函数模型系统(TLS) Christenson 、Jorgenson 和Liu于1975年提出了如下的间接效用函数: 得到需求函数模型系统为:

⒊ 几乎理想的需求函数模型系统(AIDS,Almost Ideal Demand System ) Deaton和Muellbauer于1980年提出了如下的间接效用函数:

导出需求函数形式为 :

⒋ Lewbel需求系统(Lewbel Demand System) Lewbel(1989)对AIDS进行了改进,提出了包含AIDS和TLS的Lewbel需求系统

⒌ 逆需求函数模型(Inverse Demand System) 价格是需求量的函数 适用于某些商品 根据Anderson(1980),Barten,Betterdorf(1989),Holt(2002)等人的研究发现,同常规的需求函数模型系统一样,逆需求函数模型系统也可以通过效用最大化法则推导出来。 Anderson(1980),Huang(1988)和Eales(1994)等通过应用距离函数推导出了逆需求函数系统。

几乎所有需求函数模型系统,都发展了相应的逆需求函数模型系统 绝大多数经验研究工作都集中在肉类、鱼类、食品等不易保存的产品市场,这种市场一般带有较浓的买方市场的特征。

五、建立与应用需求函数模型中的几个问题

⒈ 交叉估计 ⑴ 问题的提出 收入和价格两类变量对商品需求量的影响是不同的。为什么? 商品需求量和收入之间存在长期关系;而价格水平一般只对商品需求量具有短期影响。为什么? 时间序列数据适合于短期弹性的估计,截面数据适合于长期弹性的估计。 用同一组样本数据同时估计需求函数模型的所有参数,在理论上是存在问题的。

于是就提出了合并时间序列数据和截面数据的估计方法,即交叉估计方法。 用截面数据为样本估计模型中的一部分反映长期影响的参数,然后再用时间序列数据为样本估计模型中的另一部分反映短期影响的参数,分两阶段完成模型的估计。

⑵ 估计方法 以对数线性需求函数为例,假设只包括收入和自价格 利用第T年的截面数据 在截面上认为价格是常数 估计得到

当以时间序列数据为样本时,将模型写成: 令 有 估计得到

⒉大类商品的数量与价格 ⑴ 以购买支出额度量数量、以价格指数度量价格 例如: 模型是否满足0阶齐次性条件?

⑵ 对于具有相同计量单位的类商品的处理

⑶ 对于具有不同计量单位的类商品的处理 一种经验处理方法,缺少理论支持