第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1 <…< x n =b, 其中 h k =x k+1 -x k, 如是等距节 点 h=(b-a)/n, h 称为步长。 y(x) 的解析表达式不容易得到或根本无法得到,我们用数.

Slides:



Advertisements
Similar presentations
版 画 制 作版 画 制 作 版 画 种 类版 画 种 类 版 画 作 品版 画 作 品 刘承川.
Advertisements

数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
第六章 数值微分 6.1 插值型数值微分公式 6.2 插值型数值积分. 6.1 插值型数值微分公式 当 x 为插值节点 时,上式简化为 故一般限于对节点上的导数值采用插值多项式的相应导数 值进行近似计算,以便估计误差。 一般地 这类公式称为插值型数值微分公式。
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 8 章 常微分方程 实际中,很多问题的数学模型都是微分方程。我们可以研究它们的一些 性质。但是,只有极少数特殊的方程有解析解。对于绝大部分的微分方程是.
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
新疆医科大学 主讲人:张利萍 计 算 方 法. zlp 第五章 常微分方程数值解 5.1 引言 ( 基本求解公式 ) 5.2 Runge-Kutta 法 5.3 微分方程组和高阶方程解法简介.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量. 再例如, 既容易计算又是较好的近似值 问题 : 这个线性函数 ( 改变量的主要部分 ) 是否 所有函数的改变量都有 ? 它是什么 ? 如何求 ?
第 14 章 常微分方程的 MATLAB 求 解 编者. Outline 14.1 微分方程的基本概念 14.2 几种常用微分方程类型 14.3 高阶线性微分方程 14.4 一阶微分方程初值问题的数值解 14.5 一阶微分方程组和高阶微分方程的数值解 14.6 边值问题的数值解.
1 第八章 常微分方程数值解法. 2 1 .微分方程的数值解法 3 在这些节点上把常微分方程的初值问题离散化为差 分方程的相应问题,再求出这些点上的差分方程的解 作为相应的微分方程的近似值(满足精度要求)。
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
1 第八章常微分方程初值问题的数值解法. 2 第八章 常微分方程数值解法 8.1 引言 ( 基本求解公式 )8.1 引言 ( 基本求解公式 ) 8.2 Runge-Kutta 法8.2 Runge-Kutta 法 8.3 微分方程组和高阶方程解法简介8.3 微分方程组和高阶方程解法简介.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
计算机数学基础(下) --数值分析 教师:孙继荣 电话: 028 -
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
理学院 张立杰 《数值分析》第四讲 数值积分与微分. §4.1 引言 第四章:数值积分与数值微分 1 、积分的概念 设 任取 做 如果 存在, 则称 可积,极限值称为函数 在区间 [a,b] 上的 定积分,记为 : Riemann 积分.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
南 通. 南通概述 南通,位于江苏省东部, 东抵黄海,南望长江。 “ 据江 海之会、扼南北之喉 ” ,隔江 与中国经济最发达的上海及 苏南地区相依,被誉为 “ 北上 海 ” 。 南通也是中国首批对 外开放的 14 个沿海城市之一 ,被称为 “ 中国近代第一城 ” 。 南通面临海外和内陆两大经 济辐射扇面,素有.
1 天天 5 蔬果 國立彰化特殊教育學校 延杰股份有限公司營養師:陳婷貽. 2 蔬果彩虹 579 蔬果彩虹 歲以內兒童,每天 攝取五份新鮮蔬菜水 果,其中應有三份蔬 菜兩份水果 蔬菜份數水果份數總份數 兒童 325 女性 437 男性 549.
高等学校英语应用能力考试 考务培训 兰州文理学院教务处 2014 年 12 月. 考务培训 21 日请监考人员上午 8:00 (下午 2:30 )到综合楼 205 教室集合,查看 监考安排,由考务负责人进行考务 培训。
均衡推进,确保质量 08学年第一学期教学工作会议 广州市培正中学
黑木耳.
投資權證13問 交易所宣導資料(104) 1.以大盤指數為標的之權證,和大盤指數的連動性,為什麼比和期交所期指的連動性差?
如何把作文写具体.
第一节 人口与人种 第一课时.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
增值评价 2014级 初中起点报告 解读培训 辽宁省基础教育质量监测与评价中心.
第二章 数值微分和数值积分.
第3章 MATLAB数值计算 2017/9/9.
第九章 常微分方程数值解  考虑一阶常微分方程的初值问题
9.1 数值积分基本方法 9.2 梯形积分 9.3 Simpson积分 9.4 Newton-Cotes积分 9.5 Romberg积分
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
计算方法 第2章 数值微分与数值积分 2.1 数值微分.
Ordinary Differential Equations
计算机数学基础(下) 第5编 数值分析 第14章 常微分方程的数值解法.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 数值积分法在系统仿真中的应用 3.1 连续系统仿真中常用的数值积分法……………. 3.2 刚性系统的特点及算法………………………….
非线性物理——混沌 向前 胡冰清
第三章 导数与微分 习 题 课 主要内容 典型例题.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
穩定是指偏離平衡時能夠回復平衡的特性,控制則是改變飛行狀態的機制。
数值计算方法 第八章 常微分方程初值问题数值解法  重庆邮电大学.
/* Numerical Methods for Ordinary Differential Equations */
第四章 数值积分与数值微分 — 复合求积公式 — Romberg 算法.
排容原理 機率概念與應用網路學習研究.
计算机数学基础(下) 第5编 数值分析 第12章 数值积分与微分(续).
Partial Differential Equations §2 Separation of variables
主讲:张瑞 Tel: (O) 计算方法(B) 主讲:张瑞 Tel: (O)
高雄半日遊 西子灣-旗津-駁二.
一 般 的 代 数 方 程 函数solve用于求解一般代数方程的根,假定S为符号表达式,命令solve (S)求解表达式等于0的根,也可以再输入一个参数指定未知数。例: syms a b c x S=a*x^2+b*x+c; solve(S) ans = [ 1/2/a*(-b+(b^2-4*a*c)^(1/2))]
计算方法(B) 主讲:张明波 Tel: (O),
第六章 数值积分与数值微分.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
Presentation transcript:

第九章 常微分方程数值解法 §1 、引言

微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1 <…< x n =b, 其中 h k =x k+1 -x k, 如是等距节 点 h=(b-a)/n, h 称为步长。 y(x) 的解析表达式不容易得到或根本无法得到,我们用数 值方法求得 y(x) 在每个节点 x k 上 y(x k ) 的近似值,用 y k 表示, 即 y k ≈ y(x k ) ,这样 y 0, y 1,...,y n 称为微分方程的数值解。

微分方程离散化常用方法

§2 尤拉( Eular) 方法

2 、 Euler 方法的误差估计

3 、 总体方法误差 (1)

3 、 总体方法误差 (2)

4 、微分方程数值解的稳定性

Euler 法的绝对稳定区域

二、向后(后退的) Euler 方法

向后 Euler 法的稳定性

三、梯形公式

梯形公式的稳定性

四、改进的尤拉公式 梯形公式虽然提高了精度,但使算法复杂。而在实际计算中 只迭代一次,这样建立的预测 — 校正系统称作改进的尤拉公式。

尤拉两步公式

§3. 龙格 — 库塔方法 一、 Runge-Kutta 法的基本思想( 1 )

Runge-Kutta 法的基本思想( 2 )

二、二阶龙格-库塔方法

三、三阶龙格-库塔方法

四、四阶龙格-库塔方法

五、变步长的龙格 — 库塔方法

R-K 方法的绝对稳定区域

§4. 线性多步法

线性多步公式的导出

二、常用的线性多步公式

利用数值积分方法求线性多步公式

§5. 预测 — 校正系统 用显式公式计算预测值,然后用隐式公式进行校正, 得到近似值 y n+1 这样一组计算公式称为预测 — 校正系统。 一般采用同阶的隐式公式与显式公式。常用的预 测 — 校正系统有两种:

用局部截断误差进一步修正预测-校正公式

§5. 常微分方程组与高阶方程的数值解

2) 方程组的 R-k 法

二、化高阶方程为一阶方程组