计算机数学基础(下) --数值分析 教师:孙继荣 电话: 028 - 87768609

Slides:



Advertisements
Similar presentations
数学建模计算 1 基于 MATLAB 的数学建模竞赛计算 计算在建模竞赛中的作用 数学建模竞赛中的数学软件 MATLAB 数学建模工具箱 数学建模 MATLAB 命令及建模应用.
Advertisements

数值分析 第五节 数值微分 在实际问题中,往往会遇到某函数 f(x) 是用表格 表示的, 用通常的导数定义无法求导, 因此要寻求其他 方法近似求导。常用的数值微分方法有 : 一. 运用差商求数值微分 二.运用插值函数求数值微分 三. 运用样条插值函数求数值微分 四. 运用数值积分求数值微分.
第六章 数值微分 6.1 插值型数值微分公式 6.2 插值型数值积分. 6.1 插值型数值微分公式 当 x 为插值节点 时,上式简化为 故一般限于对节点上的导数值采用插值多项式的相应导数 值进行近似计算,以便估计误差。 一般地 这类公式称为插值型数值微分公式。
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
新疆医科大学 主讲人:张利萍 计 算 方 法. zlp 第五章 常微分方程数值解 5.1 引言 ( 基本求解公式 ) 5.2 Runge-Kutta 法 5.3 微分方程组和高阶方程解法简介.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
1 第八章 常微分方程数值解法. 2 1 .微分方程的数值解法 3 在这些节点上把常微分方程的初值问题离散化为差 分方程的相应问题,再求出这些点上的差分方程的解 作为相应的微分方程的近似值(满足精度要求)。
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
1 第八章常微分方程初值问题的数值解法. 2 第八章 常微分方程数值解法 8.1 引言 ( 基本求解公式 )8.1 引言 ( 基本求解公式 ) 8.2 Runge-Kutta 法8.2 Runge-Kutta 法 8.3 微分方程组和高阶方程解法简介8.3 微分方程组和高阶方程解法简介.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
第 5 章 数值积分 §1 插值型求积公式 §2 复化求积公式 §3 龙贝格 (Romberg) 求积方法 §4§4 数值微分 数值微分.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
1 4.5 高斯求积公式 一般理论 求积公式 含有 个待定参数 当 为等距节点时得到的插值型求积公式其代数精度至 少为 次. 如果适当选取 有可能使求积公式 具有 次代数精度,这类求积公式称为高斯 (Gauss) 求积公式.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
1 、牛顿 - 莱布尼兹公式 另外若给出的函数 f(x) 是数据表,也不好求函数的积分。 计算定积分的方法: 但是求函数 f(x) 的原函数 F(x) 不一定比计算积分容易, 例如函数 找不到用初等函数表示的原函数。 一、数值求积的基本思想 实验 4 数值积分与微分 主讲人:魏志强.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
理学院 张立杰 《数值分析》第四讲 数值积分与微分. §4.1 引言 第四章:数值积分与数值微分 1 、积分的概念 设 任取 做 如果 存在, 则称 可积,极限值称为函数 在区间 [a,b] 上的 定积分,记为 : Riemann 积分.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
计算机网络 授 课: 李俊娥(教授 武汉大学计算机学院) 电 话: : 课程网站 :
《程序设计实践》 孙辉 理工配楼104A
复旦大学上海医学院.
计算机网络教程 任课教师:孙颖楷.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
——Windows98与Office2000(第二版) 林卓然编著 中山大学出版社
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
第3章 MATLAB数值计算 2017/9/9.
第九章 常微分方程数值解  考虑一阶常微分方程的初值问题
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
9.1 数值积分基本方法 9.2 梯形积分 9.3 Simpson积分 9.4 Newton-Cotes积分 9.5 Romberg积分
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 数值积分与数值微分 — 基本概念 — Newton-Cotes 公式.
数值计算方法与算法.
第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.
定积分习题课.
计算机数学基础(下) 第5编 数值分析 第14章 常微分方程的数值解法.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 数值积分法在系统仿真中的应用 3.1 连续系统仿真中常用的数值积分法……………. 3.2 刚性系统的特点及算法………………………….
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
《数据结构》课程简介 李武军 南京大学计算机科学与技术系 2016年秋季.
《数据库原理及应用》课程介绍 信息工程学院 孙俊国
数值计算方法 第八章 常微分方程初值问题数值解法  重庆邮电大学.
西南科技大学网络教育系列课程 数学软件 数学软件 第5讲 MATLAB数值计算二 主讲教师: 鲜大权 副教授 西南科技大学理学院数学系.
Computer Graphics 计算机图形学基础 张 赐 Mail: CSDN博客地址:
/* Numerical Methods for Ordinary Differential Equations */
第四章 数值积分与数值微分 — 复合求积公式 — Romberg 算法.
计算机数学基础 主讲老师: 邓辉文.
计算机数学基础(下) 第5编 数值分析 第12章 数值积分与微分(续).
第三章 线性代数方程组的解法 在自然科学和工程技术中很多问题的解决常常归结为解线性代数方程组。例如: (蓝色)建筑工程中的结构力学问题;
第六章 计算方法  非线性方程求解 多项式插值与曲线拟合 数值微分与数值积分 求常微分方程数值解命令.
无线通信系统 信源:消息信号(调制信号) 振荡器:高频载波(正弦) 三要素: 振幅 AM 频率 FM 相位 PM 超外差接收 已调信号.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
一 般 的 代 数 方 程 函数solve用于求解一般代数方程的根,假定S为符号表达式,命令solve (S)求解表达式等于0的根,也可以再输入一个参数指定未知数。例: syms a b c x S=a*x^2+b*x+c; solve(S) ans = [ 1/2/a*(-b+(b^2-4*a*c)^(1/2))]
建模常见问题MATLAB求解  .
计算方法(B) 主讲:张明波 Tel: (O),
第六章 数值积分与数值微分.
§2 方阵的特征值与特征向量.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
数学模型实验课(二) 最小二乘法与直线拟合.
Presentation transcript:

计算机数学基础(下) --数值分析 教师:孙继荣 电话: 028 -

计算机数学基础-孙继荣 录像课安排 讲 次讲 次章 次章 次内 容内 容 1 第 10 章线性方程组的数值解法 2 第 11 章函数插值与最小二乘拟合 3 第 12 章数值积分与微分 4 第 12 章数值积分与微分 5 第 12 章数值积分与微分 6 第 12 章数值积分与微分 7 第 13 章方程求根 8 第 14 章常微分方程的数值解法 9 第 14 章常微分方程的数值解法

计算机数学基础-孙继荣 教学课时安排 第 周章教 学 内 容教 学 内 容面授录象 网络学 习 实验自学 19 数值分析中的误差 、32、3 10 线性方程组的数值解法 、54、5 11 函数插值与最小二乘拟 合 、7、8、96、7、8、9 12 数值积分与微分 、 方程求根 半期作业、答疑 、 14 上机实习 、 常微分方程的数值解法 、 18 期末复习 总计

计算机数学基础-孙继荣 教学要求 了解误差理论 熟练掌握高斯消去法,掌握几个简单迭代法 了解插值概念,掌握拉个朗日插值公式和牛顿插值公 式,掌握曲线拟合的最小二乘法 知道数值积分的思想和代数精度概念。掌握牛顿-课 茨求积分公式,重点是梯形公式和抛物线公式,知道 高斯求积公式。 掌握几个微分公式。 掌握求非线性方程的根的方法。 掌握一阶微分方程初值问题的数值解法的欧拉法和龙 格-库塔法。

计算机数学基础-孙继荣 考核说明 以本课程的教学大纲和指定教材任现淼主编、 吴裕树副主编的《计算机数学基础 ( 下册 )  数 值分析与组合数学》 ( 中央电大出版社出版 ) 为 依据进行考核。 考核分三个层次: 理解-了解-知道 熟练掌握-掌握-会 结业考核分两个部分: 形成性考核: 20 % 期末考试: 80 %