· · §6-5 麦克斯韦速率分布律 一. 分布的概念 问题的提出 年龄

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
第一节 物质的微观模型 统计规律性.
第二篇 热力学统计物理.
四、麦克斯韦速率分布函数 大量分子看作小球 总分子数 N 设 为具有速度 分子数 . 有分布规律与速度有关
§5.1 理想气体的压强 【演示】气体压强模拟 一、理想气体的微观假设 1、关于每个分子力学性质的假设
§18.3 M-B 统计在理想气体中的应用 重点:将M-B统计应用于理想气体得出的几个统计规律 一、麦克斯韦分子速率分布定律
第12章 气体动理论 扫描隧道显微镜(STM).
第七章 气体动理论 7.6 气体分子速率的分布规律.
第12章 气体动理论 热现象是在自然界中是十分普遍的,它是大量分子不规则运动的宏观表现,要认识热现象的本质,必须研究分子的微观运动。
第二章 分子动理学理论的平衡态理论 §2.1 分子动理学理论与统计物理学 §2.2 概率论的基本知识 §2.3 麦克斯韦速率分布
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第七章 气体动理论.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第二章 气体动理论.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四章 分子动理论 4-1 分子动理论的基本观点 一.分子热运动的基本特征 宏观物体是由大量微观粒子组成的。
气体动理论 热 学 第 8 章 (Thermodynamics) (6)
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第一章 函数与极限.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
复习.
第四章 热力学基础 物理学. 本章概述 一、什么是热学? 研究物质处于热状态下有关性质和规律的物理学分支学科。 二、研究方法
激光器的速率方程.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第15章 量子力学(quantum mechanics) 初步
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
热力学第一定律的应用 --理想气体等容过程、定容摩尔热容 --理想气体等压过程 、定压摩尔热容.
难点:连续变量函数分布与二维连续变量分布
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
热力学与统计物理 金晓峰 复旦大学物理系 /7/27.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
题解: P120 5——8 V3=100m/S Ρ=1.29×10-3g/cm3 P3-P2=1000Pa.
题解: P120 5——8 V3=100m/S Ρ=1.29×10-3g/cm3 P3-P2=1000Pa.
知识回顾.
Presentation transcript:

· · §6-5 麦克斯韦速率分布律 一. 分布的概念 问题的提出 年龄 §6-5 麦克斯韦速率分布律 一. 分布的概念 · 问题的提出 气体系统是由大量分子组成, 而各分子的速率通过碰撞不断地改变, 不可能逐个加以描述。 · 分布的概念 例如学生人数按年龄的分布 年龄 15 ~16 17 ~18 19 ~20 21~22 人数按年龄的分布 2000 3000 4000 1000 人数比率按年龄的分布 20% 30% 40% 10%

例如气体分子按速率的分布 速率 … 分子数比率按速的分布 {ΔNi }就是分子数按速率的分布 v1 ~ v2 v2 ~ v3 vi ~ vi +Δv 分子数按速率的分布 ΔN1 ΔN2 ΔNi 分子数比率按速的分布 ΔN1/N ΔN2/N ΔNi/N {ΔNi }就是分子数按速率的分布

二. 气体速率分布的实验测定 1. 实验装置 2. 测量原理 (1) 能通过细槽到达检测器 D 的分子所满足的条件 通过改变角速度 w 的大小, 选择速率v (2) 通过细槽的宽度,选择不同的速率区间

三. 速率分布函数 f(v) (3) 沉积在检测器上相应的金属层厚度必定正比相应速率 下的分子数 (3) 沉积在检测器上相应的金属层厚度必定正比相应速率 下的分子数 三. 速率分布函数 f(v) 设某系统处于平衡态下, 总分子数为 N ,则在v~v+ dv 区间内分子数的比率为 f(v) 称为速率分布函数 分布在速率v 附近单位速率间隔内的分子数与总 分子数的比率。 意义:

四. 麦克斯韦速率分布定律 1. 麦克斯韦速率分布定律 理想气体在平衡态下分子的速率分布函数 k = 1.38×10-23 J / K ( 麦克斯韦速率分布函数 ) k = 1.38×10-23 J / K 式中μ为分子质量,T 为气体热力学温度, k 为玻耳兹曼常量 理想气体在平衡态下,气体中分子速率在v~v+ dv 区间 内的分子数与总分子数的比率为 这一规律称为麦克斯韦速率分布定律

说明 (1) 从统计的概念来看讲速率恰好等于某一值的分子数多少, 是没有意义的。 (2) 麦克斯韦速率分布定律对处于平衡态下的混合气体的各 组分分别适用。 (3) 在通常情况下实际气体分子的速率分布和麦克斯韦速率 分布能很好的符合。 任一速率间隔v1到v2 中分子数与总分子数的比率可表示为 速率分布函数满足归一化条件

· · · f(v) 2. 麦克斯韦速率分布曲线 T 由图可见,气体中 速率很小、速率很 大的分子数都很少。 在dv 间隔内, 曲线下 的面积表示速率分布 在v~v+ dv 中的分子 数与总分子数的比率 · · v O v1 v v2 v+dv ( 速率分布曲线 ) · 在v1~v2 区间内,曲线下的面积表示速率分布在v1~v2 之间 的分子数与总分子数的比率

· · · f(v) 曲线下面的总面积, 等于分布在整个速 T 率范围内所有各个 速率间隔中的分子 数与总分子数的比 率的总和 O v ( 速率分布曲线 ) (归一化条件) · 最概然速率v p f(v) 出现极大值时, 所对应的速率称为最概然速率 · 不同气体, 不同温度下的速率分布曲线的关系

由于曲线下的面积不变,由此可见 ① μ 一定,T 越大, v p 越大, 这时曲线向右移动 ② T 一定, μ 越大, v p 越小, 这时曲线向左移动 f(v) f(v) μ2(> μ1) T1 μ1 T2(> T1) v O v O

五. 分子速率的三种统计平均值 1. 平均速率 式中M 为气体的摩尔质量,R 为摩尔气体常量 思考: 是否表示在v1 ~v2 区间内的平均速率 ?

2. 方均根速率 3. 最概然速率

· · · 说明 f(v) (1) 一般三种速率用途各 不相同 T 讨论速率分布一般用 讨论分子的碰撞次数用 讨论分子的平均平动动 O v 能用 v O (2) 同一种气体分子的三种速率的大小关系:

(1) 试在图上画出同温度下氢气的速率分布曲线的大致情况, 氦气的速率分布曲线如图所示. 例 求 (1) 试在图上画出同温度下氢气的速率分布曲线的大致情况, (2) 氢气在该温度时的最概然速率和方均根速率 解 (2) O

例 有N 个粒子,其速率分布函数为 (1) 作速率分布曲线并求常数 a (2) 速率大于v0 和速率小于v0 的粒子数 求 解 (1) 由归一化条件得 O

(2) 因为速率分布曲线下的面积代表一定速率区间内的分 与总分子数的比率,所以 的分子数与总分子数的比率为 因此,v>v0 的分子数为 ( 2N/3 ) 同理 v<v0 的分子数为 ( N/3 )

例 根据麦克斯韦速率分布律,试求速率倒数的平均值 。 解 根据平均值的定义,速率倒数的平均值为

例 根据麦克斯韦速率分布率,试证明速率在最概然速率 vp~vp+Δv 区间内的分子数与温度 成反比( 设Δv 很小) 证 将最概然速率代入麦克斯韦速率分布定律中,有

金属导体中的电子,在金属内部作无规则运动,与容器中的气体分子很类似。设金属中共有N 个电子,其中电子的最大速率为vm,设电子速率在v~v+dv 之间的几率为 式中A 为常数 例 求 该电子气的平均速率 解 因为仅在(0 ,vm)区间分布有电子,所以

 ~ + 区间内的分子数与总分子数的比率。 意义: 气体分子按平动动能的分布规律 麦克斯韦速率分布定律 两边微分 代入上式得 上式表明理想气体在平衡态下,分子动能在  ~ + 区间内的分子数与总分子数的比率。 意义: 思考 最概然平动动能是否等于最概然速率所对应的平动动能?

· §6-6 分子的平均自由程和平均碰撞次数 一. 分子的平均碰撞频率 一个分子单位时间内 和其它分子碰撞的平 均次数,称为分子的 §6-6 分子的平均自由程和平均碰撞次数 一. 分子的平均碰撞频率 一个分子单位时间内 和其它分子碰撞的平 均次数,称为分子的 平均碰撞频率。 · 假设 每个分子都可以看成直径为d 的弹性小球,分子间的碰撞为完全弹性碰撞。大量分子中,只有被考察的特定分子A 以平均速率 运动,其它分子都看作静止不动。

· · · 单位时间内与分子 A 发生碰撞的分子数为 平均碰撞频率为 考虑到所有分子实际上都在运动,则有 用宏观量 p 、T 表示的平均碰撞频率为

二. 分子的平均自由程 分子在连续两次碰撞之间自由运动的平均路程,称为分子 的平均自由程 。 用宏观量 p 、T 表示的分子平均自由程为 说明 在标准状态下,各种气体分子的平均碰撞频率的数量级 约为 109 s-1,平均自由程的数量级约为10-7 ~ 10-8 m 。

例 估算氢气分子在标准状态下的平均碰撞频率 解 在标准状态下,有 对氢气分子取 ,则 常温常压下,一个分子在一秒内平均要碰撞几十亿次,可见气体分子之间的碰撞是多么的频繁!

真空管的线度为 10-2 m ,其中真空度为 1.33× 10-3 Pa 。 例 27℃ 时单位体积内的空气分子数、平均自由程、平均碰撞 次数 。 求 解 由气体的状态方程, 有

在这种情况下气体分子相互之间很少发生碰撞,只是不断地来回碰撞真空管的壁,因此气体分子的平均自由程就应该是容器的线度。 即