1.4  一元二次不等式 一、素质教育目标 (一)知识教学点 1.二次函数性质、图象. 2.解一元二次不等式. 3.有约束条件二次函数的最值.

Slides:



Advertisements
Similar presentations
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
Advertisements

6.2 二次函数图象和性质 (1) 1 、函数 y = x 2 的图像是什么样子呢 ? 2 、如何画 y=x 2 的图象呢 ?
12.9 简单的二元 二次方程(二).
代数方程总复习 五十四中学 苗 伟.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
18.2一元二次方程的解法 (公式法).
3-2 條件不等式 解一元 n 次不等式 二元一次不等式的圖解法 函數的極植.
圆复习.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
第三章 函数逼近 — 最佳平方逼近.
第二章 二次函数 第二节 结识抛物线
26.2用函数观点看一元二次方程.
食用受污染三鹿牌婴幼儿配方奶粉相关的 婴幼儿泌尿系统结石的超声诊断.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
2010青岛中能足球俱乐部招商手册 电话:
一次函数的图象复习课 南华实验学校 初二(10)班 教师:朱中萍.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
初中数学 九年级(下册) 5.2 二次函数的图像和性质(4).
深圳市晨兴餐饮投资管理有限公司 招商手册.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
义务教育教科书(北师)九年级数学下册 第二章 二次函数 二次函数与一元二次方程的关系.
二次函数复习 x y.
人民教育出版社九年级下册第二十六章第一节一课时参赛课件
人教版26.1.4二次函数y=ax2+bx+c 的图象 x y o 中学数学网(群英学科)收集提供.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
三角函数的图象和性质 正弦函数,余弦函数的图象和性质 正弦,余弦函数的图形 函数y=Asin( wx+y)的图象 正切函数的图象和性质
2.1.2 指数函数及其性质.
6.4不等式的解法举例(1) 2019年4月17日星期三.
1.5 函数y=Asin(ωx+φ)的图象.
四川省天全中学说课竞赛 多媒体演示课件 ★ ☆ 函数的单调性 天全中学数学组 熊 亮.
第四章 一次函数 4. 一次函数的应用(第1课时).
二次函數的圖形的探討 一次函數與二次函數的定義 一次函數的圖形 二次函數的圖形.
人教版高一数学上学期 第一章第四节 绝对值不等式的解法(2)
人教版高一数学上学期 第一章第五节 一元二次不等式的解法(3)
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第二章 二次函数 第八节 二次函数与一元二次方程(一)
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
9.1.2不等式的性质 周村实验中学 许伟伟.
一元二次不等式解法(1).
一元二次不等式的解法.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
1.4.3正切函数的图象及性质.
1.4.3正切函数的图象及性质.
(3.3.2) 函数的极值与导数.
§3.7函数的单调性 y x.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
認識函數.
§2 方阵的特征值与特征向量.
人教A版 必修一 3.1·函数与方程 方程的根与函数的零点.
正弦函数的性质与图像.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
1.4.2 正弦函数、 余弦函数的性质.
§3 函数的单调性.
23.2二次函数y=ax2的图象和性质.
九年级数学下 §26.1.1二次函数.
二次函数的概念 武穴市石佛寺中学 周兵华.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
1.4.1正弦函数、余弦函数的图象.
解下列各一元二次方程式: (1)(x+1)2=81 x+1=9 或 x+1=-9 x=8 或 x=-10 (2)(x-5)2+3=0
1.4.1正弦函数、余弦函数的图象.
第二章 一元一次不等式和一元一次不等式组 回顾与复习(一).
九年级上册 第二十二章 二次函数 二次函数    的 图象和性质 北京市中关村中学 杨爱青.
一次函数、二次函数与幂函数 基础知识 自主学习
函数与方程 更多模板请关注:
一元一次方程的解法(-).
函数与导数 临猗中学 陶建厂.
Presentation transcript:

1.4  一元二次不等式 一、素质教育目标 (一)知识教学点 1.二次函数性质、图象. 2.解一元二次不等式. 3.有约束条件二次函数的最值. 4.二次函数、二次方程与一元二次不等式解间的关系,一元二次不等式的应用. (二)能力训练点 1.理解一元二次函数,一元二次方程与一元二次不等式间的关系. 2.掌握解一元二次不等式的方法. 3.掌握求有约束条件二次函数最值. 4.能灵活应用解不等式知识求区间根的问题. (三)德育渗透点 通过理解一元二次函数、一元二次方程与一元二次不等式间的关系,不仅提高学生解综合问题的能力,也使学生初步树立辩证观.

二、教学重点、难点、疑点及解决办法 1.教学重点:掌握解一元二次不等式的方法,会求有约束条件的二次函数最值,应用一元二次不等式知识解区间根问题. 2.教学难点:理解一元二次函数、一元二次方程、一元二次不等式间的关系,讨论区间根问题. 3.教学疑点:正确区分绝对不等式f(x)>0与f(x)<0条件的差异. 三、课时安排 本课题安排2课时. 四、教与学过程设计 第一课时 初中我们学过一元一次不等式,前面进一步学习|ax+b|<c与|ax-b|>c型的不等式,这里虽有绝对值符号,但是一次的.现在,我们将提高一步学习一元二次不等式(宣布课题). 1.二次函数及图象 师:设有一元二次函数y=ax2+bx+c(a≠0),试问什么时候二次函数图象与x轴有二交点?一交点?无交点?

生:判别式Δ=b2-Δac,当Δ>0时y=f(x)与x轴有二交点;当Δ=0时,y=f(x)与x轴仅有一交点;当Δ<0时,y=f(x)与x轴无交点. 师:当Δ>0时,设y=f(x)图象与x轴两交点为x1<x2.试作,当a>0时,y=f(x)图象,当a<0时,y=f(x)的图象. 师指出,一元二次函数y=f(x)与x轴交点x1,x2就是相应一元二次方程f(x)=0的两根. 观察图象不难知道.

师提问:当△=0,y=f(x)图象与x轴交点几个?其图象? 师指出,观察图象不难知道 △=0,a>0  △=0,a<0 师问:当△<0时,y=f(x)图象与x轴有公共点吗?其图象? 生:当△<0时,y=f(x)图象与x轴无公共点,其图象为

师指出:观察图象不难知道. a>0时 绝对不等式f(x)>0解为x∈R. 绝对不等式f(x)<0解为x∈R. 2.例举(师生共同活动) 例1  解不等式(x+4)(x-1)<0. 解:令(x+4)(x-1)=0得 x1=-4,x2=1,△>0,又a>0. ∴  不等式解为 -4<x<1.

例2  解不等式2x2-3x-2>0. 解:令2x2-3x-2=0,得 ∴不等式解为 例3  解不等式-3x2+6x>2. 解:原不等式为-3x2+6x-2>0. 令-3x2+6x-2=0,得

例4  解不等式4x2-6x+1>0. 解:令9x2-6x+1=0,得 例5  解不等式x2-x+2<0. 解:令x2-x+2=0 ∵△<0,a>0, ∴不等式解为x∈ . 例6  解不等式x2+mx-6m2<0. 解:令x2+mx-6m2=0有 △=m2+24m2≥0,x1=2m,x2=-3m. 又a>0 当x>0时,x1>x2. ∴不等式解为

-3m<x<2m. 当m=0时,x1=x2. ∴不等式解为 x∈ 当m<0时,x1<x2. 2m<x<-3m. 3、练习(略) 五、作业(略) 六、板书设计

第二课时 一、教与孝过程设计 师:上节课学习了一元二次函数图象,解一元二次不等式.本节课将进一步学习一元二次函数性质、解一元二次不等式在求最值与解区间根问题的应用(宣布课题). 1.一元二次函数性质 师:设有一元二次函数y=2x2-8x+1试问,它的标准式是什么?顶点坐标?对称轴?单调区间?

生:y=2(x-2)2-7 其顶点坐标为(2,-7) 对称轴x=2, 从图象不难看到当x>2时,随x变大,y的值也变大,当x<2时随x值变大,y的值反而变小. 师:进一步,考虑一般情况,设有二次函数y=ax2+bx+c(不设妨a>0),试问,它的标准式是什么?顶点坐标?对称轴?单调区间? 生:经配方有

2.有约束条件最值 师提问:设有一元二次函数y=2x2-8x+1.试问, 当x∈[3,4]时,随x变大,y的值变大还是变小? 由此y=f(x)在[3,4]上的最大值与最小值分别是什么? 生:经配方有y=2(x-2)2-7 ∵对称轴x=2,区间[3,4]在对称轴右边, ∴y=f(x)在[3,4]上随x变大,y的值也变大,因此 ymax=f(4)=1. ymin=f(3)=-5. 师提问:设有一元二次函数y=2x2-4ax+2a2+3.试问, 此函数对称轴是什么?

当x∈[3,4]时,随x变大,y的值是变大还是变小?与a取值有何关系? 由此,求y=f(x)在[3,4]上的最大值与最小值. 生:经配方有y=2(x-a)2+3. 对称轴为x=a. 当a≤3时,因为区间[3,4]在对称轴的右边,因此,当x∈[3,4]时,随x变大,y的值也变大. 当3<a<4时,对称轴x=a在区间[3,4]内,此时,若3≤x≤a,随x变大,y的值变小,但若a≤x≤4,随x变大,y的值变大. 当4≤a时,因为区间[3,4]在对称轴的左边,因此,当x∈[3,4]时,随x变大,y的值反而变小.

根据上述分析,可知. 当a≤3时, ymax=f(4)=2a2-16a+35. ymin=f(3)=2a2-12a+21. 当3<a<4时, ymin=f(a)=3. 其中,a≤3.5时, yamx=f(4)=2a2-16a+35. a≥3.5时, ymax=f(3)=2a2-12a+21. 当≥4时, ymin=f(4)=2a2-16a+35.

3.区间根问题。 师:在初中学习一元二次方程时,我们已学过方程无实根,有相等实根,有两不等实根的条件,此时,没有考虑根在什么范围内,在高中,将进一步学习根在指定区间内应满足的条件,下面将通过具体的例题说明之. 设有一元二次方程 x2+2(m-1)x+(m+2)=0. 试问: (1)m为何值时,有一正根、一负根. (2)m为何值时,有一根大于1、另一根小于1. (3)m为何值时,有两正根. (4)m为何值时,有两负根. (5)m为何值时,仅有一根在[1,4]内? 生:(在教师帮助下回答问题)

(1)设方程一正根x2,一负根x1,显然x1、x2<0,依违达定理有m+2<0. 师问:此时为什么设考虑△>0呢? 生:因为,x1、x2<0条件下,ac<0,因此能保证△>0. (2)设x1<1,x2>1,则x1-1<0,x2-1>0只要求(x1-1)(x2-1)<0,即x1x2-(x1+x2)+1<0. 依韦达定理有 (m+2)+2(m-1)+1<0.

依韦达定理有 师问:若缺少条件△>0行吗? 存在如图1-12所示的二次函数,开口向上,与x轴无交点. 因此,方程f(x)=0无实根,不合题设.

(5)由图象不难知道,方程f(x)=0在[3,4]内仅有一实根条件为f(3)·f(4)<0,即 [9+6(m-1)+(m+2)]·[16+8(m-1)+(m+2)]<0. ∴(7m+1)(9m+10)<0.

二、作业(略) 三、板书设计