高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第三十五讲 二阶常系数线性微分方程.

Slides:



Advertisements
Similar presentations
高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
第 14 章 常微分方程的 MATLAB 求 解 编者. Outline 14.1 微分方程的基本概念 14.2 几种常用微分方程类型 14.3 高阶线性微分方程 14.4 一阶微分方程初值问题的数值解 14.5 一阶微分方程组和高阶微分方程的数值解 14.6 边值问题的数值解.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
第三节 二阶线形微分方程 二阶线形齐次微分方程4.3.1 二阶线形齐次微分方程 二阶线形非齐次微分方程4.3.2 二阶线形非齐次微分方程.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
高等数学一 主讲 杨俊 演示文稿制作 杨俊. 高等数学一 第 3 章 一元函数微分学的应用 第 4 章 一元函数 积分学及应用 第 1 章 函数、极限与连续 第 2 章 导数与微分.
积 分 的 应 用 不定积分的应用 定积分的应用 第四章 微分方程 不定积分的应用 第 一 节第 一 节 学习重点 微分方程的概念 一阶微分方程的求解.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
计算机数学基础(下) --数值分析 教师:孙继荣 电话: 028 -
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
4.3 一阶线性微分方程 一、案例 二、概念和公式的引出 三、进一步的练习 四、实训. 一、案例 [ 溶液的混合 ] 一容器内盛有 50L 的盐水溶液,其中含有 10g 的盐.现将每升含盐 2g 的溶液以每分钟 5L 的速度注 入容器,并不断进行搅拌,使混合液迅速达到均匀, 同时混合液以 3L/min.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
一、可分离变量的微分方程 可分离变量的微分方程. 解法 为微分方程的解. 分离变量法 §2 一阶常微分方程.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
经济数学 第四章 不定积分. 4.1 不定积分的概念与性质 4.2 不定积分的性质 4.3 不定积分的换元积分法 4.4 不定积分的分部积分法.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
代数方程总复习 五十四中学 苗 伟.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
18.2一元二次方程的解法 (公式法).
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
5.3 二阶微分方程 主要内容 1.可降阶的二阶微分方程 2.二阶常系数线性微分方程.
第三章 函数逼近 — 最佳平方逼近.
第七节 第七章 常系数 齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 转化 求特征方程(代数方程)之根.
第六章 微分方程 — 积分问题 推广 — 微分方程问题.
复习 齐次方程 齐次方程的解法 化为可分离变量的方程然后求解. 可化为齐次方程的方程 其它情况, 令 化为齐次方程;
第十二章 微分方程 — 积分问题 推广 — 微分方程问题.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或. 一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第一章 函数与极限.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
§4.3 常系数线性方程组.
第三章 导数与微分 习 题 课 主要内容 典型例题.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
第九章 微分方程与差分方程简介 §9.1 微分方程的基本概念 §9.2 一阶微分方程 §9.3 高阶常系数线性微分方程
第四模块 微积分学的应用 第十三节 二阶常系数线性微分方程 一、二阶线性微分方程解的结构 二、二阶常系数线性微分方程的解法 三、应用举例.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第四模块 函数的积分学 第三节 第二类换元积分法.
第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: 第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: (1) n个未知数的齐次线性方程组Ax.
Partial Differential Equations §2 Separation of variables
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
§2 方阵的特征值与特征向量.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
5.2.1 变量可分离的微分方程 形如 的微分方程成为变量可 分离的微分方程. 解法 分离变量法 5.2 一阶微分方程(80)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
一元一次方程的解法(-).
Presentation transcript:

高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第三十五讲 二阶常系数线性微分方程

第七章 常微分方程 本章学习要求: 了解微分方程、解、通解、初始条件和特解的概念. 了解下列几种一阶微分方程:变量可分离的方程、齐次方 第七章 常微分方程 本章学习要求: 了解微分方程、解、通解、初始条件和特解的概念. 了解下列几种一阶微分方程:变量可分离的方程、齐次方 程、一阶线性方程、伯努利(Bernoulli)方程和全微分 方程.熟练掌握分离变量法和一阶线性方程的解法. 会利用变量代换的方法求解齐次方程和伯努利方程. 知道下列高阶方程的降阶法: 了解高阶线性微分方程阶的结构,并知道高阶常系数齐线 性微分方程的解法. 熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余 弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.

第五节 二阶常系数线性微分方程 二阶常系数齐线性方程 二阶常系数非齐线性方程 特征方程 特征根

一、二阶常系数齐次线性微分方程 形如 的方程,称为二阶常系数齐线性微分方程, 即 特征方程

二阶常系数齐线性微分方程 的特征方程为 是方程 (1) 的两个线性无关的解,故方程 (1) 的通解为

二阶常系数齐线性微分方程 的特征方程为 由求根公式

由刘维尔公式求另一个解: 于是,当特征方程有重实根时,方程 ( 1 ) 的通解为

二阶常系数齐线性微分方程 的特征方程为 3) 特征方程有一对共轭复根: 是方程 ( 1 ) 的两个线性无关的解,其通解为 利用欧拉公式去掉表达式中虚数单位 i 。

欧拉公式: 由线性方程解的性质: 均为方程 ( 1 ) 的解,且它们是线性无关的:

故当特征方程有一对共轭复根 时,原方程的通解可表示为

二阶常系数齐线性微分方程 特征方程 特 征 根 通 解 形 式

例 解

例 解

例 解 故所求特解为

例 此时弹簧仅受到弹性恢复力 f 的作用。求反映此弹 突然放手, 开始拉长, 簧运动的规律(设其弹性系数为 k )。 解

例 此时弹簧仅受到弹性恢复力 f 的作用。求反映此弹 突然放手, 开始拉长, 簧运动的规律(设其弹性系数为 k )。 解 取 x 轴如如图所示。 由力学的虎克定理,有 ( 恢复力与运动方向相反 ) 由牛顿第二定律,得

它能正确描述我们的问题吗? 记拉长后,突然放手的时刻为 我们要找的规律是下列初值问题的解:

简谐振动 从而,所求运动规律为

二、n 阶常系数齐线性微分方程 形如 的方程,称为 n 阶常系数齐线性微分方程,

n 阶常系数齐线性微分方程的特征方程为 特 征 根 通 解 中 的 对 应 项

例 解

例 在研究弹性地基梁时,遇到一个微分方程 试求此方程的通解。 解

三、二阶常系数非齐线性微分方程 形如 的方程,称为二阶常系数非齐线性微分方程, 它对应的齐方程为 我们只讨论函数 f ( x ) 的几种简单情形下,(2) 的特解。

常系数非齐线性微分方程算子解法 参考书: 《常微分方程讲义》 王柔怀 伍卓群 编 人民教育出版社

方程 (2) 对应的齐方程 (1) 的特征方程及特征根为 单根 二重根 你认为方程应该有什么样子的特解? 一对共轭复根

假设方程 有下列形式的特解: 则 代入方程 (2) ,得 即 方程 (3) 的系数与方程 (2) 的特征根有关。

由方程 (3) 及多项式求导的特点可知,应有 方程 (2) 有下列形式的特解:

由多项式求导的特点可知,应有 方程 (2) 有下列形式的特解:

由多项式求导的特点可知,应有 方程 (2) 有下列形式的特解:

定理 1 当二阶常系数非齐线性方程 它有下列形式的特解: 其中:

例 解 对应的齐方程的特征方程为 特征根为 对应的齐方程的通解为 将它代入原方程,得

比较两边同类项的系数,得 故原方程有一特解为 综上所述,原方程的通解为

例 解 对应的齐方程的特征方程为 特征根为 对应的齐方程的通解为 请同学们自己算 将它代入原方程,得

上式即 故原方程有一特解为 综上所述,原方程的通解为

例 解 对应的齐方程的通解为 综上所述,原方程的通解为

你有什么想法没有?

欧拉公式: 性质 4 的一个特解。

例 解 代入上述方程,得 从而,原方程有一特解为

例 解 代入上述方程,得 比较系数,得

故 从而,原方程有一特解为

例 解 由上面两个例题立即可得

例 解 对应的齐次方程的通解为 将它代入此方程中,得 从而,原方程有一特解为

故原方程的通解为 我想, 你一定会做这种推广工作。

四、欧拉方程 形如 的方程,称为 n 阶欧拉方程,其中 关于变量 t 的常系数线性微分方程 。

引入算子记号: 由数学归纳法可以证明:

例 解 这是三阶欧拉方程, 作代数运算后,得 即 这是一个三阶常系数线性非齐微分方程,且

方程 (1) 对应的齐方程的通解为 为方程 (1) 特解形式,代入方程 (1) 中,得 从而 故原欧拉方程的通解为

作业 P359 1,3大题的奇数小题