第十六章 logistic回归分析 (Logistic Regression)

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
科研设计的统计学原则 高月求.
Logistic回归分析 汕大医学院预防医学教研室.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
研究中心:河北医科大学第四医院 ***科 主要研究者:**** 申办者:********公司 CRO:********公司
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
第13章 多重线性回归与相关 (multiple linear regression & multiple correlation)
完全随机设计多样本资料秩和检验.
《高等数学》(理学) 常数项级数的概念 袁安锋
研究设计 入门.
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三篇 医学统计学方法. 第三篇 医学统计学方法 医学统计学方法 实习2 主讲人 陶育纯 医学统计学方法 实习2 主讲人 陶育纯 流行病与卫生统计学教研室
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
Multiple linear regression
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
第2章 一元线性回归 2 .1 一元线性回归模型 2 .2 参数 的估计 2 .3 最小二乘估计的性质 2 .4 回归方程的显著性检验
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第十章 方差分析.
第七章 参数估计 7.3 参数的区间估计.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
数列.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
试验名称: 申办方: CRO:.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第六章 Excel的应用 一、Excel的单元格与区域 1、单元格:H8, D7, IV26等 2、区域:H2..D8, HS98:IT77
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
概率论与数理统计B.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第六章 Excel的应用 五、EXCEL的数据库功能 1、Excel的数据库及其结构 2、Excel下的数据排序 (1)Excel的字段名行
回归分析实验课程 (实验三) 多项式回归和定性变量的处理.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
本底对汞原子第一激发能测量的影响 钱振宇
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
海报题目 简介: 介绍此项仿真工作的目标和需要解决的问题。 可以添加合适的图片。
Presentation transcript:

第十六章 logistic回归分析 (Logistic Regression) 39

Content Logistic regression Conditional logistic regression Application 39

讲述内容: 第一节 logistic回归 第二节 条件logistic回归 第三节 logistic回归的应用 及其注意事项 39

目的:作出以多个自变量(危险因素)估计应变量(结果因素)的logistic回归方程。属于概率型非线性回归。 资料:1. 应变量为反映某现象发生与不发生的二值变量;2. 自变量宜全部或大部分为分类变量,可有少数数值变量。分类变量要数量化。 39

用途:研究某种疾病或现象发生和多个危 险因素(或保护因子)的数量关系。 用 检验(或u检验)的局限性: 1.只能研究1个危险因素; 2.只能得出定性结论。 39

1. 成组(非条件)logistic回归方程。 2. 配对(条件)logistic回归方程。 种类: 1. 成组(非条件)logistic回归方程。 2. 配对(条件)logistic回归方程。 39

第一节  logistic回归 (非条件logistic回归 ) 39

一、基本概念 , 在m个自变量的作用下阳性结果发生的概率记作: 39

若令: 回 归 模 型 取值范围 概率P:0~1,logitP:-∞~∞。 39

图16-1 logistic函数的图形 39

常数项 表示暴露剂量为0时个体发病与不发病概率之比的自然对数。 模 型 参 数 的 意 义 常数项 表示暴露剂量为0时个体发病与不发病概率之比的自然对数。 回归系数 表示自变量 改变一个单位时logitP 的改变量。 39

优势比OR(odds ratio) 流行病学衡量危险因素作用大小的比数比例指标。计算公式为: 39

与 logisticP 的关系: 39

39

二、logistic回归模型的参数估计 参数估计 原理:最大似然( likelihood )估计 39

2. 优势比估计 可反映某一因素两个不同水平(c1,c0)的优势比。 39

例16-1 表16-1是一个研究吸烟、饮酒与食道癌关系的病例-对照资料,试作logistic回归分析。 确 定 各 变 量 编 码 39

表16-1 吸烟与食道癌关系的病例-对照调查资料 表16-1 吸烟与食道癌关系的病例-对照调查资料 39

经logistic回归计算后得: 的95可信区间: 39

三、logistic回归模型的假设检验 1.似然比检验 2. 39

四、变量筛选 方法:前进法、后退法和逐步法。 检验统计量:不是 F 统计量,而是似然比统计量、 Wald 统计量和计分统计量之一。 例16-2 为了探讨冠心病发生的有关危险因素,对26例冠心病病人和28例对照者进行病例对照研究,各因素的说明及资料见表16-2和表16-3。试用logistic 逐步回归分析方法筛选危险因素。 39

表16-2 冠心病8个可能的危险因素与赋值 39

表16-3 冠心病危险因素的病例对照调查资料 39

学会看结果! 表16-4 例16-2进入方程中的自变量及有关参数的估计值 39

39

第二节 条件logistic回归 一、原理 39

表16-5 1: M 条件logistic回归数据的格式 39

条件 logistic 模型 39

二、应用实例 39

P344: 表16-7 喉癌1:2配对病例对照调查资料整理表 39

6个危险因素 变量筛选 4个进方程,结果见表16-9。 采用逐步法 6个危险因素 变量筛选 4个进方程,结果见表16-9。 表16-8 例16-3进入方程中的自变量及有关参数的估计值 39

一、logistic回归的应用 第三节 logistic回归的应用及其注意事项 1.流行病学危险因素分析 logistic回归分析的特点之一是参数意义清楚,即得到某一因素的回归系数后,可以很快估计出这一因素在不同水平下的优势比或近似相对危险度,因此非常适合于流行病学研究。logistic回归既适合于队列研究(cohort study),也适合于病例-对照研究(case-control study),同样还可以用于断面研究(cross-sectional study) 39

2.临床试验数据分析 临床试验的目的大多是为了评价某种药物或治疗方法的效果,如果有其他影响效果的非处理因素(如年龄、病情等)在试验组和对照组中分布不均衡,就有可能夸大或掩盖试验组的治疗效果。 尽管在分组时要求按随机化原则分配,但由于样本含量有限,非处理因素在试验组和对照组内的分布仍有可能不均衡,需要在分析阶段对构成混杂的非处理因素进行调整。当评价指标为二值变量时(如有效和无效),可以利用logistic回归分析得到调整后的药物评价结果。对于按分层设计的临床试验可以用相同的方法对分层因素进行调整和分析。 39

3.分析药物或毒物的剂量反应 在一些药物或毒物效价的剂量-反应实验研究中,每一只动物药物耐受量可能有很大的不同,不同剂量使动物发生“阳性反应”的概率分布常呈正偏态,将剂量取对数后则概率分布接近正态分布。由于正态分布函数与logistic分布函数十分接近,如果用P表示在剂量为X时的阳性率,可用下述模型表示它们之间的关系 用这一模型可以求出任一剂量的阳性反应率 传统的一些方法往往对实验设计有严格的要求,如剂量按等比级数排列,各剂量组的例数必须相同等, 采用logistic回归的方法则没有这些限制。 39

4.预测与判别 logistic回归是一个概率型模型,因此可以利用它预测某事件发生的概率。例如在临床上可以根据患者的一些检查指标,判断患某种疾病的概率有多大。关于判别问题见第十八章。 39

二、logistic回归应用的注意事项 39

种类: 1. 成组(非条件)logistic回归方程。 本章小结: 目的:作出以多个自变量(危险因素)估计应变量(结果因素)的logistic回归方程。属于概率型非线性回归。 资料:1. 应变量为反映某现象发生与不发生的二值变量; 2. 自变量宜全部或大部分为分类变量,可有少数数值 变量。分类变量要数量化。 用途:研究某种疾病或现象发生和多个危险因素(或保护因子)的数量关系。 种类: 1. 成组(非条件)logistic回归方程。 2. 配对(条件)logistic回归方程。 39

课后应用思考题: 为了分析影响医院抢救急性心肌梗死(AMI)患者能否成功的因素,某医院收集了5年中所有的AMI患者的抢救病史(有关因素很多,由于篇幅有限,本例仅列出3个),共200例见下表。其中P=0表示抢救成功,P=1表示抢救未成功而死亡;X1=1表示抢救前已发生休克, X1=0表示抢救前未发生休克; X2=1表示抢救前已发生心衰, X2=0表示抢救前未发生心衰; X3=1表示患者从开始AMI症状到抢救时已超过12小时, X3=0表示患者从开始AMI症状到抢救时未超过12小时。 请问最好采用哪种分析方法?为什么? 分析结果有哪些? 39

AMI患者的抢救危险因素资料 P=0(在医院抢救成功) P=1(在医院抢救未成功而死亡) X1 X2 X3 N 35 4 1 34 10 35 4 1 34 10 17 19 15 6 9 1  6  39

学 习 愉 快 !