MATLAB 在教学中的应用.

Slides:



Advertisements
Similar presentations
發現生命的力量 — 陳樹菊阿嬤,來了 … 《不凡的慷慨》書籍賞析. 你所知道的陳樹菊  2010 《富比世》雜誌亞洲慈善英雄! 2010 美國《時代》雜誌最具影響力百大人物! 《讀者文摘》亞洲英雄!  導演李安﹕「她的生活稱不上富裕,仍然陸續捐贈 了將近一千萬台幣幫助數個不同的單位 … 」
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
第 5 章 中國的都市.
这是一个数字的 乐园 这里埋藏着丰富的 宝藏 请跟我一起走进数学的 殿堂.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
第3节 二次型与二次型的化简 一、二次型的定义 二、二次型的化简(矩阵的合同) 下页.
Tool Command Language --11级ACM班 金天行.
一元一次方程的应用 行程问题.
古文閱讀 – 像虎伏獸 明 劉基 組員: 5號江依倫 6號江若薇 12號張珉芫 32號蔡燕如.
Matlab教學 Speaker:林昱志 Date:2012/10/18.
1-1 MATLAB 小傳(1) 由MathWorks公司於1984年推出的 數學軟體。 名稱是由「矩陣實驗室﹙MATrix
1.1.2 四 种 命 题.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
定积分的换元法 和分部积分法 换元公式 分部积分公式 小结 1/24.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
在PHP和MYSQL中实现完美的中文显示
线性代数机算与应用 李仁先 2018/11/24.
走进编程 程序的顺序结构(二).
第一单元 初识C程序与C程序开发平台搭建 ---观其大略
计算机数学基础 主讲老师: 邓辉文.
I. 线性代数的来龙去脉 -----了解内容简介
引 言.
Introduction to MATLAB
第1章 MATLAB操作基础 1.1 绪论 1.2 MATLAB概述 1.3 MATLAB的运行环境与安装 1.4 MATLAB集成环境 1.5 MATLAB帮助系统.
第5章 线性代数 矩阵分析 矩阵分解 线性方程组的求解 符号矩阵.
用数学软件解决高等代数问题 主讲 张力宏、张洪刚
C语言程序设计 主讲教师:陆幼利.
Partial Differential Equations §2 Separation of variables
MATLAB 入门教程.
第1章 c++概述 1.1 C++语言的简史及特点 1.2 简单的C++程序 1.3 C++语言的基本组成
实验一 计算复变函数极限、微分、积分、 留数、泰勒级数展开式 (一) 实验类型:验证性 (二) 实验类别:基础实验
學這些有什麼好處呢? 為了把資料作更客觀之總結描述或比較多組資料。總而言之,就是要找出一個數能代表整組數據。
微分方程之应用 ----恶狼追兔问题 恶狼 追 小兔 主讲人:曹怀火 数学与计算机科学系
实验教学 MATLAB在行列式和矩阵中的应用 授课教师:杨梦云.
第4章 Excel电子表格制作软件 4.4 函数(一).
第三单元 第2课 实验 一元函数的积分 实验目的:掌握matlab求解有关不定积分和定积分的问题,深入理解定积分的概念和几何意义。
§ 9.1常用数学软件简介及MATLAB基础知识
第13讲 非齐次线性方程组的结构解, 线性空间与线性变换
2019/5/8 第2章 数据分析软件介绍.
LOGIX500软件入门 西安华光信息技术有限公司 2008年7月11日.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
第一单元 第1课 Matlab概述 1.MATLAB 2.工具箱 3.高效数值计算功能 4.完备的计算结果和编程可视化功能
魏新宇 MATLAB/Simulink 与控制系统仿真 魏新宇
1.非线性规划模型 2.非线性规划的Matlab形式
建模常见问题MATLAB求解  .
计算机绘图 AutoCAD2016.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
第1章 MATLAB操作基础 1. 1 MATLAB概述 1. 2 MATLAB的运行环境与安装 1. 3 MATLAB集成环境 1
§2 方阵的特征值与特征向量.
第7章 MATLAB工程计算.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
§ 9.1常用数学软件简介及MATLAB基础知识
西南科技大学网络教育系列课程 数学软件 数学软件 第7讲 MATLAB符号计算二 主讲教师: 鲜大权 副教授 西南科技大学理学院数学系.
Presentation transcript:

MATLAB 在教学中的应用

MATLAB简介 MATLAB是MATrix LABoratory 的缩写,是由美国MathWorks公司开发的工程计算软件,迄今MATLAB已推出了6.5版. 1984年MathWorks公司正式将MATLAB推向市场,从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能.在国际学术界,MATLAB已经被确认为准确、可靠的科学计算标准软件.在设计研究单位和工业部门,MATLAB被认作进行高效研究、开发的首选软件工具.

MATLAB的功能 功能强大 MATLAB产品组是从支持概念设计、算法开发、建模仿真, 到实时实现的集成环境,可用来进行: 数据分析 数值与符号计算 工程与科学绘图 控制系统设计 数字图像信号处理 建模、仿真、原型开发 财务工程、应用开发、图形用户界面设计 功能强大

MATLAB语言特点 语言简洁 编程效率高,允许用数学的语言来编写程序 用户使用方便,把程序的编辑、编译、连接和执行融为一体 高效方便的矩阵和数组运算 语句简单,内涵丰富 扩充能力强,交互性,开放性 方便的绘图功能 该软件由c语言编写,移植性好 语言简洁

MATLAB的环境 菜单项; 工具栏; 【Command Window】命令窗口; 【Launch Pad】分类帮助窗口; 【Workspace】工作区窗口; 【Command History】指令历史记录窗口; 【Current Directory】当前目录选择窗口;

MATLAB操作窗口 双击桌面快捷键,启动软件。 接受命令的窗口

M文件的编写与应用 MATLAB的M文件就是用户把要实现的命令写在 一个以m作为文件扩展名的文件中,然后由MATLAB 系统进行解释,运行出结果。即为实现某种功能的命 令集。从而使得MATLAB具有强大的可开发性与可扩 展性。 MATLAB是由C语言开发而成,因此,M文件的 语法规则与C语言几乎完全一样。 M文件可在命令窗口直接调用,只需键入文件名。

不在命令窗口显示结果

调用M文件shili.m

MATLAB在《微积分》中的应用 1、求函数值 例1 在命令窗口中键入表达式 并求 时的函数值。 >> x=2,y=4 >>z=x^2+exp(x+y)-y*log(x)-3 命令窗口显示结果: x = 2 y = 4 z = 401.6562

例2 用循环语句编写M文件计算ex的值,其中x,n为输入 function y=e(x,n) y=1;s=1; for i=1:n s=s*i; y=y+x^i/s; end y >> y=e(1,100) ans = y y = 2.7183 调用函数 M文件

>>limit(sqrt(n+sqrt(n))-sqrt(n),n,inf) MATLAB在《微积分》中的应用 2、求极限 例3 求极限 LIMIT Limit of an expression. LIMIT(F,x,a) takes the limit of the symbolic expression F as x -> a. LIMIT(F,x,a,'right') or LIMIT(F,x,a,'left') specify the direction of a one-sided limit. 定义符号变量 >> syms n; >>limit(sqrt(n+sqrt(n))-sqrt(n),n,inf) ans = 1/2

MATLAB在《微积分》中的应用 3、求导数 例4 设 ,求 定义X为符号变量 >> syms x >> y=10^x+x^10+log(x) y = x^10+10^x+log(x) >> diff(y) 求 Difference:差分 Differential:微分的 ans = 10*x^9+10^x*log(10)+1/x

例5 设 求 >> syms x; >> y=log(1+x); >> a=diff(y,x,2) a = -1/(1+x)^2 >> x=1;eval(a) ans = -0.2500 求 求 将符号表达式 转换成数值表达式

例6 设 ,求 >> syms x y; z=exp(2*x)*(x+y^2+2*y); a=diff(z,x) b=diff(z,y) c=diff(z,x,2) d=diff(z,y,2) e=diff(a,y)

a =2*exp(2*x)*(x+y^2+2*y)+exp(2*x) b =exp(2*x)*(2*y+2) c =4*exp(2*x)*(x+y^2+2*y)+4*exp(2*x) d =2*exp(2*x) e =2*exp(2*x)*(2*y+2)

MATLAB在《微积分》中的应用 4、求极值和零点 例7 已知 ,求 (1)函数的零点;(2)函数在[-1,2]上的最小值 >> fzero('3*x^5-x^4+2*x^3+x^2+3',0) 命令函数 函数 起始点 ans = -0.8952 >> fminbnd('3*x^5-x^4+2*x^3+x^2+3',-1,2) ans = -1.1791e-005

MATLAB在《微积分》中的应用 4、求极值和零点 ,求 例8 已知 函数在点(1,-1,0)附近的最小值 >> [X,FVAL]= FMINSEARCH('x(1)^2+2.5*sin(x(2))- x(3)*x(1)*x(2)^2',[1 -1 0]) X = 0.0010 -1.5708 0.0008 FVAL =-2.5000

MATLAB在《微积分》中的应用 5、求积分 例9 求不定积分 Integrate:积分 >> int(cos(2*x)*cos(3*x)) ans =1/2*sin(x)+1/10*sin(5*x) 例10 求定积分 >> x=1:0.01:exp(1); >> y=x.^2.*log(x); >> trapz(x,y) ans = 4.5137 >> eval(int(x^2*log(x),1,exp(1))) ans = 4.5746

例10 求定积分 >> int(exp(-x^2/2),0,1) ans = 1/2*erf(1/2*2^(1/2))*2^(1/2)*pi^(1/2) >> x=0:0.01:1; y=exp(-x.^2/2); trapz(x,y) ans = 0.8556 >> y='exp(-x.^2/2)'; >> quadl(y,0,1) ans = 0.8556 梯形法数值积分 变步长数值积分

MATLAB在《微积分》中的应用 5、求积分 例11 求二重积分 >> syms x y; >> f=y^2/x^2; >> int(int(f,x,1/2,2),y,1,2) ans =7/2 >> f='(y.^2)./(x.^2)'; >> dblquad(f,1/2,2,1,2) ans = 3.5000 符号积分 数值计算

MATLAB在《微积分》中的应用 6、解微分方程 例12 计算初值问题: >> dsolve('Dy=x+y','y(0)=1','x') ans =-x-1+2*exp(x) 一定要大写

MATLAB在《微积分》中的应用 7、级数问题 例13 求函数 的泰勒展开式,并计算该 函数在x=3.42时的近似值。 >> syms x; >> taylor(sin(x)/x,x,10) >> x=3.42; >> eval(ans) ans = -0.0753 ans = 1-1/6*x^2+1/120*x^4-1/5040*x^6+1/362880*x^8

MATLAB在《线性代数》中的应用 1、矩阵的基本运算 例1 已知 >> a=[4 -2 2;-3 0 5;1 5 3]; b=[1 3 4;-2 0 -3;2 -1 1]; >> a*b 12 10 24 7 -14 -7 -3 0 -8 ans = =AB

MATLAB在《线性代数》中的应用 1、矩阵的基本运算 例1 已知 >> inv(a) ans = 0.1582 -0.1013 0.0633 -0.0886 -0.0633 0.1646 0.0949 0.1392 0.0380

MATLAB在《线性代数》中的应用 1、矩阵的基本运算 例1 已知 >> rank(a) ans = 3

MATLAB在《线性代数》中的应用 1、矩阵的基本运算 例1 已知 >> a/b ans = 0 0 2.0000 -2.7143 -8.0000 -8.1429 2.4286 3.0000 2.2857

MATLAB在《线性代数》中的应用 1、矩阵的基本运算 例1 已知 >> a\b ans = 0.4873 0.4114 1.0000 0.3671 -0.4304 0 -0.1076 0.2468 0

MATLAB在《线性代数》中的应用 2、解线性方程组 >> a=[1 -1 4 -2;1 -1 -1 2;3 1 7 -2;1 -3 -12 6]; >> rref(a) 将矩阵A化为最简阶梯形 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 RREF Reduced row echelon form ans = R(A)=4=n; 所以方程组只有零解。

MATLAB在《线性代数》中的应用 2、解线性方程组

>> a=[2 3 1;1 -2 4;3 8 -2;4 -1 9]; >> b=[4;-5;13;-6]; >> c=null(a,'r') c = -2 1 >> [l u]=lu(a); >> x0=u\(l\b) x0 = -3124/135 3529/270 2989/270 求齐次方程组 的基础解系 求非齐次方程组 的一个特解 所以方程组的一般解为

3、将矩阵对角化 >> a=[-1 2 0;-2 3 0;3 0 2]; >> [v,d]=eig(a) v = 0 379/1257 379/1257 0 379/1257 379/1257 1 -379/419 -379/419 d =2 0 0 0 1 0 0 0 1 A的特征值为2,1,1

4、用正交变换化二次型为标准形 >> a=[1 1 1 1 1 1 1 1 1 1 1 1]; >> format >> [u t]=schur(a) u =0.0846 0.4928 0.7071 0.5000 0.0846 0.4928 -0.7071 0.5000 -0.7815 -0.3732 0 0.5000 0.6124 -0.6124 0 0.5000 t = -0.0000 0 0 0 0 -0.0000 0 0 0 0 0 0 0 0 0 4.0000

>> a=[1 1 1 1;1 1 1 1;1 1 1 1;1 1 1 1]; format rat [u t]=schur(a) FORMAT RAT Approximation by ratio of small integers. u = 596/7049 1095/2222 985/1393 1/2 596/7049 1095/2222 -985/1393 1/2 -1198/1533 -789/2114 0 1/2 1079/1762 -1079/1762 0 1/2 t = * 0 0 0 0 * 0 0 “*”表示 0 0 0 0 近似于零 0 0 0 4

4、用正交变换化二次型为标准形 结论:作正交变换 则有

再见