2.9  正弦函数、余弦函数的图象和性质(二) 一、素质教育目标 (一)知识教学点

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
因数与倍数 2 、 5 的倍数的特征 绿色圃中小学教育网 扶余市蔡家沟镇中心小学 雷可心.
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
2 、 5 的倍数的特征 玉田百姓. 1 、在 2 、 3 、 5 、 8 、 10 、 12 、 25 、 40 这几个数中, 40 的因数有几个? 5 的倍数有几个? 复习: 2 、在 6 、 10 、 12 、 15 、 18 、 20 这几个数中,哪些数 是 2 的倍数?哪些数是 5 的倍数?
因数与倍数 2 、 5 、 3 的倍数的特 征 新人教版五年级数学下册 执教者:佛山市高明区明城镇明城小学 谭道芬.
冀教版四年级数学上册 本节课我们主要来学习 2 、 3 、 5 的倍数特征,同学们要注意观察 和总结规律,掌握 2 、 3 、 5 的倍 数分别有什么特点,并且能够按 要求找出符合条件的数。
6.2 二次函数图象和性质 (1) 1 、函数 y = x 2 的图像是什么样子呢 ? 2 、如何画 y=x 2 的图象呢 ?
1.4.1正弦、余弦函数的图象 莆田一中 林清利.
第二章 二次函数 第二节 结识抛物线
10.2 立方根.
一次函数的图象复习课 南华实验学校 初二(10)班 教师:朱中萍.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
§ 5.1 导数 § 5.2 求导法则与导数公式 § 5.3 隐函数与参数方程求导 § 5.4 微分 § 5.5 高阶导数与高阶微分
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
正弦、余弦函数的图象 制作:范先明 X.
计算机数学基础 主讲老师: 邓辉文.
余弦函数的图象与性质 各位老师好! X.
正弦函数、余弦函数的图象 授课教师: 李毅重.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
复习: 什么叫做锐角三角函数(即直角三角形中的三角函数)? 以锐角为自变量,以比值为函数值的函数叫做锐角三角函数。
三角函数的图象和性质 正弦函数,余弦函数的图象和性质 正弦,余弦函数的图形 函数y=Asin( wx+y)的图象 正切函数的图象和性质
2.1.2 指数函数及其性质.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
28.1 锐角三角函数(2) ——余弦、正切.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第一章 函数与极限.
数列.
1.5 函数y=Asin(ωx+φ)的图象.
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
任意角的三角函数(1).
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
2.9  正弦函数、余弦函数的图象和性质(一) 一、素质教育目标 (-)知识教学点 1.用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象.
函 数 连 续 的 概 念 淮南职业技术学院.
高中数学必修四 第一章 1.4.2正弦函数余弦函数的性质(2).
2、5的倍数的特征 马郎小学 陈伟.
第4课时 三角函数的单调性、奇偶性、周期性 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
正弦函数图象是怎样画的? 正切函数是不是周期函数? 正切函数的定义域是什么? y=tanx,xR, 的图象 叫做正切曲线;
1.4.3正切函数的图象及性质.
高中数学选修 导数的计算.
三角函数 内蒙古五原一中 党国强 复 习 课.
第5课时 三角函数的值域和最值 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
1.4.3正切函数的图象及性质.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
欢迎各位领导同仁 莅临指导!.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
幂 函 数.
人教A版 必修一 3.1·函数与方程 方程的根与函数的零点.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
幂函数的性质与图象.
正弦函数的性质与图像.
1.4.2 正弦函数、 余弦函数的性质.
****九年级数学组汇报教学 课题:§ 锐角三角函数 授课教师: 授课班级:九○三班.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
1.4.1正弦函数、余弦函数的图象.
正弦函数、余弦函数的图象与性质 授课者:章咏梅.
1.4.1正弦函数、余弦函数的图象.
* 07/16/ 天津市第七十四中学 李家利 *.
第一章 三 角 函 数 1.5 正弦函数的图像与性质.
Presentation transcript:

2.9  正弦函数、余弦函数的图象和性质(二) 一、素质教育目标 (一)知识教学点 正弦函数和余弦函数的性质:定义域、值域、周期性、奇偶性、单调性. (二)能力训练点 1.经过观察和推证揭示正弦函数和余弦函数的性质. 2.应用正弦函数和余弦函数的性质解决一些简单的问题. (三)德育渗透点 在揭示正弦函数和余弦函数的性质的过程中,注意培养学生多观察、勤思考、善应用的品格. 二、教学重点、难点、疑点及解决办法 (一)教学重点:正弦函数y=sinx,x∈R的性质. (二)教学难点:周期函数的概念. (三)教学疑点:周期函数是否一定有最小正周期. 三、课时安排 本课题安排1课时.

四、教与学课程设计 (一)复习正弦函数、余弦函数的图象 师:上一节课我们研究了正弦函数、余弦函数的画法,现在请一位同学来讲怎样画正弦函数和余弦函数的图象(师用幻灯打出正弦函数、余弦函数的图象). 生:在直角坐标系的x轴上任取一点O1,以O1为圆心作单位圆,从这个圆与x轴的交点A起把圆分成12等份,作出对应于角O1 分成12等份,把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点,连线即得正弦函数y=sinx,x∈[0,2π]的图象.余弦函数的图象,只要把余弦线“竖立”起来,就同样可以得到余弦函数y=cosx,x∈[0,2π]的图象.然后向左、右平移. 师:回答正确.今天,我们要研究正弦函数和余弦函数的性质. (二)正弦函数和余弦函数的性质 师:我们观察正弦函数y=sinx和余弦函数y=cosx,它们的定义域是什么?

生:都是(-∞,+∞). 师:值域是什么? 生:都是[-1,1] 师:最值是什么?当x为何值时,取得最佳? 函数y=cosx在x=2kπ,k∈Z时取最大值y=1;在x=(2k+1)π,k∈Z时取最小值y=-1. 师:观察正弦函数y=sinx和余弦函数y=cosx,发现它们的值按照一定的规律不断重复出现.由诱导公式sin(x+2kπ)=sinx,cos(x+2kπ)=cosx(x∈R),也能知道它们的值按照一定的规律不断重复出现.这就是它们的一个重要性质. 一般地,对于函数y=f(x),如果存在一个不为零的常数下,使得当x取定义域内的每一个值时,f(x+Y)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.例如,对于

正弦函数y=sinx,x∈R来说,2π,4π,…,-2π,-4π,…都是它的周期,一般地,2kπ(k∈Z,且k≠0)都是它的周期.对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期.例如,2π是正弦函数y=sinx,x∈R的所有周期中的最小正数,因而2π是这个函数的最小正周期. 正弦函数y=sinx,x∈R和余弦函数y=cosx,x∈R都是周期函数,2kπ(k∈Z,且k≠0)都是它们的周期,最小正周期是2π. 今后读到三角函数的周期时,一般指的是三角函数的最小正周期. 师:现在我们来研究正弦函数和余弦函数的多奇性.什么叫做奇函数?什么叫做偶函数? 生:如果对于函数定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做奇函数. 如果对于函数定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.

师:正弦函数和余弦函数是奇函数还是偶函数?为什么? 生:∵  sin(-x)=-sinx,∴  正弦函数y=sinx,x∈R是奇函数. ∵  cos(-x)=cosx,∴  余弦函数y=cosx,x∈R是偶函数. 师:回答正确.我们还要知道它们的图象的特征,正弦函数是奇函数,则正弦曲线关于原点O对称;余弦函数是偶函数,则余弦曲线关于y轴对称. 减小到-1. 由正弦函数的周期性可知:

π](k∈Z)上,都从1减小到-1,是减函数.也就是说,正弦函数y=sinx 观察余弦曲线可得到什么结论? 生:由余弦曲线可以看出,函数y=cosx在每一个闭区间[(2k-1)π,2kπ](k∈Z)上都从-1增大到1,是增函数;在每一个闭区间[2kπ,(2k+1)π](k∈Z)上,都从1减小到-1,是减函数.也就是说,余弦函数y=cosx的单调区间是[(2k-1)π,kπ]及[2kπ,(2k+1)π],(k∈Z). 师:完全正确.上面我们研究了正弦函数和余弦函数的五个性质:定义域,值域,周期性,奇偶性、单调性.下面请同学们做几起练习. (三)例题

例1  求使下列函数取得最大值的x的集合,并说出最大值是多少? (1)y=2sinx,(2)y=cosx+2,(3)y=sin2x,(4)y=3cos2x. 函数y=2sinx的最大值为2. (2)使y=cosx+2取最大值的x的集合为{x|x=2kπ,k∈Z},函数y=cosx+2的最大值为3. (4)2x=2kπ,x=kπ. ∴  使y=3cos2x取最大值的x的集合为{x|x=kπ,k∈Z},函数y=3cos2x的最大值为3. 例2  求下列函数的周期:

解:(1)因为sinx的最小正周期是2π,所以当自变量x(x∈R)增加到x+2π且必须增加到x+2π时,函数sinx的值重复出现,函数3sinx的值也重复出现,因此y=3sinx的周期是2π. (2)把2x看成是一个新的变量z,那么z的最小正周期是2π,就是说,当z增加即z+2π且必须增加到z+2π时,函数cosz的值重复出现,而z+2π=2x+2π=2(x+π),所以当x增加到x+π且必须增加到x+π时,函数值重复出现,因此y=cos2x的周期是π.

师:我们看到,例2中函数周期的变化仅与自变量x的函数有关.一 根据这个结论,我们可以由正弦函数式或余弦函数式直接写出它的 例3  判定下列函数是偶函数,还是奇函数,或者都不是. (1)y=xsinx,(2)y=|sinx|,(3)y=cos2x+secx,(4)y=sinx+cosx,

解:(1)∵  f(-x)=-xsin(-x)=xsinx=f(x),∴  y=xsinx为偶函数. (2)∵  f(-x)=|sin(-x)|=|sinx|=f(x),∴  y=|sinx|为偶函数. (3)∵  f(-x)=cos2(-x)+sec(-x)=(cos2x+secx=f(x),∴  y=cos2x=secx为偶函数. (4)都不是. (5)y=sin(π+x)=-sinx.∵  f(-x)=-sin(-x)=sinx=-f(x),∴y=sin(π+x)为奇函数.

例4  不通过求值,指出下列各式大于零,还是小于零.

(四)总结 本节课我们学习了正弦函数和余弦函数的性质:定义域、值域、周期性、奇偶性、单调性,以及它们的简单应用. 五、作业 P.191中3、4、5(1)、6、7. 六、板书设计

七、参考资料