第三章 随机事件的概率.

Slides:



Advertisements
Similar presentations
3 的倍数特征 抢三十
Advertisements


3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
概率论与数理统计 §1.3 古典概型与几何概型. 本节主要内容  排列与组合公式  古典概型  几何概型 §1.3 事件的概率及性质.
小结与复习( 4 ). 1 、内容小结 互斥事件互斥事件 不对立不对立 特点特点 ⑴ A 、 B 不能同时发生, A 发生必 然 B 不发生。 ⑵事件 A+B 是随机事件 概率概率 ,又若 A 1 , A 2 , … , A n 彼此互斥,则 对立对立 特点特点 ⑴ A 、 B 不能同时发生,但必有一.
概率统计( ZYH ) 1.3 古典概型与几何概型 一、古典概型 二、几何概型. 概率统计( ZYH ) 回忆 1.1 节的试验, E 1,E 3,E 4 有共同特性: 一、古典概型 ①(有限性)试验的样本空间 Ω 中仅含有限个样本点: ②(等可能性)每个基本事件 {ω i } 发生的可能性相同 :
山东农业大学 概率论与数理统计 主讲人:程述汉 苏本堂 §1.3 古典概型 1. 古典概型  古典概型中事件概率的计算公式  古典概型的概率计算步骤  古典概型的概率计算举例.
1 概率论与数理统计第 3 讲 本讲义可在网址 或 ftp://math.shekou.com 下载.
§1.2 事件的概率 设在 n 次试验中,事件 A 发生了 m 次,则称 为事件 A 发生的频率. 频率 频率的性质 事件 A 、 B 互斥,则 可推广到有限个两两互斥事件的和事 件. 非负性 规范性 可加性 稳定性 某一定数    
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
10.6 随机事件的概率. 高考要求: ( 1 )了解随机事件的发生存在着规律性和意 义。 ( 2 )了解等可能事件的意义。 ( 3 )会用排列、组合公式进行计算。 考基要点: 本考点为高考热点,以选择题题型判断是否为 随机事件,以选择、填空和解答题题型计算随 机事件、等可能事件的概率。理解其实质为限.
古典概型习题课. 1 .古典概型 (1) 基本事件的特点 ①任何两个基本事件是 的. ②任何事件 ( 除不可能事件 ) 都可以表示成的和. 2 .古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1) 试验中所有可能出现的基本事件 . (2) 每个基本事件出现的可能性 . 互斥.
§1.2 §1.2随机事件的概率 0≤P(A)≤1 用一个数来度量可能性的大小。这个 数应该是事件本身所固有的,可以在相同 的条件下通过大量的重复试验予以识别和 检验;可能性大的事件用较大的数来度量, 可能性小的事件用较小的数来度量。这个 用来度量可能性大小的数称为事件的概率, 用 P(A) 表示。
初中数学 九年级(上册) 4.2 等可能条件下的概率(一)(2).
第三章 概率 单元复习 第一课时.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
古典概型习题课.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
2 遺傳.
1.4 古典概型(等可能概型) 1.古典概型 2.典型例题 3. 小结.
第二讲 加法公式乘法公式 本次课讲授第一章第2、3、4、5节; 下次课结束并总结第一章,开始讲授第二章第1节;
第二节 古典概型 (等可能概型).
3.1.3 概率的基本性质.
等可能条件下的概率(一) 有些事件的概率,如某批足球的质量情况、某种绿豆在相同条件下的发芽情况,是通过在大量重复进行的同一试验时,事件A发生的频率 会稳定地在某一个常数附近摆动, 这个常数就是事件A发生的概率. 通过大量的重复的实验,得到某个事件发生的频率,进而估计其发生的概率。这种方法费时、费力而且结果有一定的摆动性,有些实验还具有破坏性.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第二讲 数据统计与分析 秦 猛 南京大学物理系 参考教材:《概率论与数理统计》 高新祖 陈华钧 编著 南京大学出版社 1.
3.2.1 古典概型 高二数学组.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
实数与向量的积.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
几何概型.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
§1.3 条件概率 条件概率与乘法公式   引例 袋中有7只白球,3只红球,白球中有4只木球,3只塑料球;红球中有2只木球,1只塑料球.现从袋中任取1球,假设每个球被取到的可能性相同.若已知取到的球是白球,问它是木球的概率是多少? 古典概型 设 A 表示任取一球,取得白球; B 表示任取一球,取得木球.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
教师: 习长新 com 概率论与数理统计 教师: 习长新 com.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
直线的倾斜角与斜率.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
1.3 概率的定义及其运算 ? ? 从直观上来看,事件A的概率是指事件A发生的可能性 P(A)应具有何种性质?
笛卡儿说:“数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。”
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
§4.5 最大公因式的矩阵求法( Ⅱ ).
Presentation transcript:

第三章 随机事件的概率

§1 古典概型 概率的古典定义

1. 定义

2. 古典概型中事件概率的计算公式 设试验 E 的基本空间由n 个基本事件构成, A 为 E 的任意一个事件,且包含 m 个基本事件,则事 称此为概率的古典定义.

3. 性质: 两个互斥事件A与B的和事件的 概率,等于事件A与事件B的概率之和。 定理: 即:

4. 古典概型的基本模型:摸球模型 (1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从袋中无 4. 古典概型的基本模型:摸球模型 (1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从袋中无 放回地依次摸出2只球,求这2只球都是白球的概率. 解 基本事件总数为 A 所包含基本事件的个数为

(2) 有放回地摸球 问题2 设袋中有4只红球和6只黑球,现从袋中有放 回地摸球3次,求前2次摸到黑球、第3次摸到红球 的概率. 解 第3次摸到红球 4种 6种 第2次摸到黑球 第1次摸到黑球 6种 第2次摸球 10种 第3次摸球 10种 第1次摸球 10种

基本事件总数为 A 所包含基本事件的个数为 课堂练习 1o 电话号码问题 在7位数的电话号码中,第一位不能为0,求数字0出现3次的概率. 2o 骰子问题 掷3颗均匀骰子,求点数之和为4的 概率.

4.古典概型的基本模型:球放入杯子模型 (1)杯子容量无限 问题1 把 4 个球放到 3个杯子中去,求第1、2个 问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球. 4个球放到3个杯子的所有放法

因此第1、2个杯子中各有两个球的概率为

(2) 每个杯子只能放一个球 问题2 把4个球放到10个杯子中去,每个杯子只能 放一个球, 求第1 至第4个杯子各放一个球的概率. 解 第1至第4个杯子各放一个球的概率为

课堂练习 1o 分房问题 将张三、李四、王五3人等可能地 分配到3 间房中去,试求每个房间恰有1人的概率. 2o 生日问题 某班有20个学生都 是同一年出生的,求有10个学生生 日是1月1日,另外10个学生生日是 12月31日的概率.

典型例题 解

解 在N件产品中抽取n件的所有可能取法共有 在 N 件产品中抽取n件,其中恰有k 件次品的取法 共有 于是所求的概率为

例3 在1~2000的整数中随机地取一个数,问取到 的整数既不能被6整除, 又不能被8整除的概率是 多少 ? 解 设 A 为事件“取到的数能被6整除”,B为事件 “取到的数能被8整除”,则所求概率为

于是所求概率为

例4 将 15 名新生随机地平均分配到三个班级中 去,这15名新生中有3名是优秀生.问 (1) 每一个班 级各分配到一名优秀生的概率是多少? (2) 3 名优 秀生分配在同一个班级的概率是多少? 解 15名新生平均分配到三个班级中的分法总数: (1) 每一个班级各分配到一名优秀生的分法共有

因此所求概率为 (2)将3名优秀生分配在同一个班级的分法共有3种, 对于每一种分法,其余12名新生的分法有 因此3名优秀生分配在同一个班级的分法共有 因此所求概率为

例5 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的. 解 假设接待站的接待时间没有 规定,且各来访者在一周的任一天 中去接待站是等可能的. 7 1 2 3 4 12 周一 周二 周三 周四 周五 周六 周日 故一周内接待 12 次来访共有

1 2 3 4 12 2 周一 周二 周二 周三 周四 周四 周五 周六 周日 12 次接待都是在周二和周四进行的共有 故12 次接待都是在周二和周四进行的概率为 小概率事件在实际中几乎是不可能发生的 , 从而可知接待时间是有规定的.

例6 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率. 解 64 个人生日各不相同的概率为 故64 个人中至少有2人生日相同的概率为

说明

我们利用软件包进行数值计算.

§2 几何概率

定义 当随机试验的基本空间是某个区域,并且任意一点落在度量 (长度、 面积、体积) 相同的子区域是等可能的,则事件 A 的概率可定义为 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型.

会面问题 例1 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不牵 连.求甲、乙两人能会面的概率. 解 那么 两人会面的充要条件为

若以 x, y 表示平面 上点的坐标 , 则有 故所求的概率为

例2 甲、乙两人约定在下午1 时到2 时之间到某 站乘公共汽车 , 又这段时间内有四班公共汽车,它们的开车时刻分别为 1:15、1:30、1:45、2:00.如果甲、乙约定 (1) 见车就乘; (2) 最多等一辆 车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时 刻是互相不牵连的,且每人在 1 时到 2 时的任何时刻到达车 站是等可能的.

解 设 x, y 分别为 甲、乙两人到达的时刻, 则有 见车就乘 的概率为

最多等一辆车,甲、乙 同乘一车的概率为

蒲丰投针试验 例3 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(a>0)的一些平行直 蒲丰资料 例3 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(a>0)的一些平行直 线,现向此平面任意投掷一根长为b( b<a )的针,试求 针与某一平行直线相交的概率. 解

  由投掷的任意性可知, 这是一个几何概型问题.

蒲丰投针试验的应用及意义

历史上一些学者的计算结果(直线距离a=1) 3.1795 859 2520 0.5419 1925 Reina 3.1415929 1808 3408 0.83 1901 Lazzerini 3.1595 489 1030 0.75 1884 Fox 3.137 382 600 1.0 1860 De Morgan 3.1554 1218 3204 0.6 1855 Smith 3.1596 2532 5000 0.8 1850 Wolf 相交次数 投掷次数 针长 时间 试验者

利用蒙特卡罗(Monte Carlo)法进行计算机模拟. 单击图形播放/暂停 ESC键退出