华东师大课标版数学八年级下 函数的图象 1.平面直角坐标系.

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
6.2 二次函数图象和性质 (1) 1 、函数 y = x 2 的图像是什么样子呢 ? 2 、如何画 y=x 2 的图象呢 ?
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
§5.2平面直角坐标系(2) 南市中学
平面向量.
§3.4 空间直线的方程.
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
高中数学 必修  空间直角坐标系 南京市第十四中学.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
3.4 空间直线的方程.
4.3 空间直角坐标系 空间直角坐标系 莆田二十八中 数学组.
第二章 二次函数 第二节 结识抛物线
10.2 立方根.
1.1.2四种命题 1.1.3四种命题间的相互关系.
在数轴上比较数的大小.
一次函数的图象复习课 南华实验学校 初二(10)班 教师:朱中萍.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
初中数学 九年级(下册) 5.2 二次函数的图像和性质(4).
余角、补角.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
第六章(平面直角坐标系) 复 习 课 合肥第38中学 陈思舞.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
北师大版三年级数学下册 分数比大小.
2.1.2 空间中直线与直线 之间的位置关系.
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
数列.
线段的有关计算.
正方形 ——计成保.
27.3 位 似
北师大版八年级(上) 第五章 位置的确定 5.2 平面直角坐标系(3).
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
PT200中拼版的制作 一、概念部分 如图中所示,PT200中坐标系定义为4种方向,当选择某的坐标系后,则认为在程式的制作中凡是在选定的贴装位置都是正的坐标,注意的是在PT200及设备中(程式部分)没有负的坐标。 *也就表示测量数据时,选择某点为原点在选定的坐标系的方向上测量元件贴装位置,所有的数值都纪录为正的数值,而不是四象限坐标系中的正的和负的数值的坐标。
3.4 圆心角(1).
3.3 垂径定理 第2课时 垂径定理的逆定理.
第一章 有理数 相反数.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
任意角的三角函数(1).
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
第4课时 绝对值.
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
空间平面与平面的 位置关系.
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
分数再认识三 真假带分数的练习课.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
坐標 →配合課本 P49~56 重點 在坐標平面上,以 ( m , n ) 表示 P 點的坐標,記為 P ( m , n ),m 為 P 點的 x 坐標,n 為 P 點的 y 坐標。 16.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
直线的倾斜角与斜率.
双曲线及其标准方程(1).
12.1 轴 对 称(2) 轴对称的性质 及线段的垂直平分线.
空间直角坐标系.
23.6 图形与坐标 图形的变换与坐标
倒数的认识 执教者: 李东杰 2017年9月18日.
5.2平面直角坐标系 锦州市实验学校:郭明明.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
反比例函数(复习课) y o x 常州市新北区实验中学 高兴林.
反比例函数(二) y o x.
位似.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
第三章 图形的平移与旋转.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
Presentation transcript:

华东师大课标版数学八年级下 函数的图象 1.平面直角坐标系

如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标 例如,点A在数轴上的坐标是4,点B在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了.

问题1 你去过电影院吗?还记得在电影院是怎么找座位的吗? 解 因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来.

问题2 在教室里,怎样确定一个同学的座位? 解 例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.

在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangled coordinates system).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.

在平面直角坐标系中,任意一点都可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N.这时,点M在x轴上对应的数为3,称为点P的横坐标(abscissa);点N在y轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2).   在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限.

例1 在 右图中分别描出坐标是(2,3)、(-2,3)、(3,-2)的点Q、S、R,Q(2,3)与P(3,2)是同一点吗?S(-2,3)与R(3,-2)是同一点吗?

解 : A(-1,2) B(2,1) C(2,-1) D(-1,-1) E(0,3) F(-2,0) (- ,+) (+, -) (- ,-) (+ , -) 解 : A(-1,2) B(2,1) C(2,-1) D(-1,-1) E(0,3) F(-2,0) (1)在第一象限内的点,横坐标是正数,纵坐标是正数; 在第二象限内的点,横坐标是负数,纵坐标是正数; 在第三象限内的点,横坐标是负数,纵坐标是负数; 在第四象限内的点,横坐标是正数,纵坐标是负数; (2)x 轴上点的纵坐标等于零;y 轴上点的横坐标等于零.

从上面的例1、例2可以发现直角坐标系上每一个点的位置都能用一对有序实数表示,反之,任何一对有序实数在直角坐标系上都有唯一的一个点和它对应.也就是说直角坐标系上的点和有序实数对是一一对应的. 你能说出这句话的含义吗?

例3 在直角坐标系中描出点A(2,-3),分别找出它关于x轴、y轴及原点的对称点,并写出这些点的坐标.观察上述写出的各点的坐标,回答: (3)关于原点对称的两点的坐标之间又有什么关系? 解 (1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反; (2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同; (3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反.

例4 在直角坐标平面内,(1)第一、三象限角平分线上点的坐标有什么特点?(2)第二、四象限角平分线上点的坐标有什么特点? 解 (1)第一、三象限角平分线上点:横坐标与纵坐标相同; (2)第二、四象限角平分线上点:横坐标与纵坐标互为相反数.

交流反思 1.平面直角坐标系的有关概念及画法; 2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法; 3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;第一、三象限角平分线上点的坐标特征;第二、四象限角平分线上点的坐标特征; 4.分别关于x轴、y轴及原点的对称的两点坐标之间的关系.

检测反馈 1.判断下列说法是否正确: (1)(2,3)和(3,2)表示同一点; (2)点(-4,1)与点(4,-1)关于原点对称; (3)坐标轴上的点的横坐标和纵坐标至少有一个为0; (4)第一象限内的点的横坐标与纵坐标均为正数.

检测反馈 2.指出下列各点所在的象限或坐标轴: A(-3,-5),B(6,-7),C(0,-6),D(-3,5),E(4,0). 3.填空: (1)点P(5,-3)关于x轴对称点的坐标是   ; (2)点P(3,-5)关于y轴对称点的坐标是     ; (3)点P(-2,-4)关于原点对称点的坐标是     .

再 见