本章优化总结.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
Yunnan University Chapt 5. 微分学基本定理及其应用 导 数导 数 函数性质 中值定理 §1. 中值定理 §2. 泰勒公式 §3. 函数的升降、凸性与极值 §4. 平面曲线的曲率 §5. 待定型.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第二章 二次函数 第二节 结识抛物线
第二章 函数、导数及其应用 第十四节 导数在研究函数中的应用(二).
第三章 习题课 中值定理及导数的应用 一、 微分中值定理及其应用 二、 导数应用 机动 目录 上页 下页 返回 结束.
第四节 对数留数与辐角原理 一、对数留数 二、辐角原理 三、路西定理 四、小结与思考.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
定积分性质和微积分学基本定理 一、 定积分性质 二、 变上限积分函数 三、 定积分基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第六章 微分中值定理及其应用.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
导数及其应用.
数形结合.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
2.1.2 指数函数及其性质.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
1.5 函数y=Asin(ωx+φ)的图象.
本章优化总结.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
3.1.3 导数的几何意义.
(1)求函数的增量Δf=Δy=f(x2)-f(x1); (2)计算平均变化率
3.1.3 导数的几何意义.
函 数 连 续 的 概 念 淮南职业技术学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
3.2 导数的计算.
导数的几何意义及其应用 滨海中学  张乐.
1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
1.4.3正切函数的图象及性质.
高中数学选修 导数的计算.
1.4.3正切函数的图象及性质.
3.3.2《导数在研究函数 中的应用-极值》.
数学第三册(选修I) 第二章《导数》 导数的应用.
§3.7函数的单调性 y x.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
欢迎各位领导同仁 莅临指导!.
§3.1函数的单调性 y x.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
人教A版 必修一 3.1·函数与方程 方程的根与函数的零点.
正弦函数的性质与图像.
导数及其应用教材分析.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
几种常见函数的 导 数.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.2正弦函数、余弦函数的性质.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
3.3 导数在研究函数中的应用   3.3.1 函数的单调性与导数.
Presentation transcript:

本章优化总结

知识体系网络 本 章 优 化 总 结 专题探究精讲

知识体系网络

专题探究精讲 导数的几何意义 题型特点:对导数的几何意义考查,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查的题型以选择题、填空题为主.

知识方法:函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率为f′(x0),相应的切线方程为y-y0=f′(x0)(x-x0).

例1

【解】 (1)可判定点(2,-6)在曲线y=f(x)上. ∵f′(x)=(x3+x-16)′=3x2+1, ∴f(x)在点(2,-6)处的切线的斜率为 k=f′(2)=13. ∴切线的方程为 y=13(x-2)+(-6), 即y=13x-32.

解之得,x0=-2, ∴y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13 解之得,x0=-2, ∴y0=(-2)3+(-2)-16=-26, k=3×(-2)2+1=13. ∴直线l的方程为y=13x,切点坐标为(-2,-26).

利用导数研究函数的单调区间 题型特点:该题型主要考查求函数的单调区间、证明或判断函数的单调性,并经常与分类讨论,数形结合等思想方法的考查融为一体.在高考命题中,三种类型均有可能出现,若以选择题或填空题的形式出现,难度则以中低档为主,若以解答题形式出现,难度则以中等偏上为主.

知识方法:应用导数求函数的单调区间的步骤: (1)确定函数的定义域; (2)求导数f′(x); (3)解不等式f′(x)>0或f′(x)<0; (4)确定并指出函数的单调增区间、减区间. 特别要注意写单调区间时,区间之间用“和”或“,”隔开,绝对不能用“∪”连结.

例2

利用导数研究函数的极值和最值 题型特点:极值问题在高考中主要以解答题的形式出现,属中档题目,它作为工具性知识能解决诸如最值、不等式证明问题,随着对数学应用能力要求的加强,这方面的命题将有所增加. 知识方法: 1.应用导数求函数极值的一般步骤: (1)确定函数f(x)的定义域; (2)解方程f′(x)=0的根; (3)检验f′(x)=0的根的两侧f′(x)的符号.

若左正右负,则f(x)在此根处取得极大值; 若左负右正,则f(x)在此根处取得极小值; 否则,此根不是f(x)的极值点. 2.求函数f(x)在闭区间[a,b]上的最大值、最小值的方法与步骤: (1)求f(x)在(a,b)内的极值; (2)将(1)求得的极值与f(a)、f(b)相比较,其中最大的一个值为最大值,最小的一个值为最小值.

特别地,①当f(x)在[a,b]上单调时,其最小值、最大值在区间端点处取得;②当f(x)在(a,b)内只有一个极值点时,若在这一点处f(x)有极大(或极小)值,则可以断定f(x)在该点处取得最大(或最小)值,这里(a,b)也可以是(-∞,+∞).

例3

(2)x变化时,f′(x)及f(x)的变化情况如下表:

利用导数解不等式恒成立问题 题型特点:这类问题多以解答题形式出现,难度较大,命题时与不等式、函数性质结合,目的考查导数的应用. 知识方法:利用导数研究某些函数的单调性与最值,可以解决一些不等式证明及不等式恒成立问题,如利用“f(x)<a恒成立⇔f(x)max<a”和“f(x)>a⇔f(x)min>a”的思想解题.

例4 设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2处取得极值.若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

当x∈(0,1)时,f′(x)>0; 当x∈(1,2)时,f′(x)<0; 当x∈(2,3)时,f′(x)>0 当x∈(0,1)时,f′(x)>0; 当x∈(1,2)时,f′(x)<0; 当x∈(2,3)时,f′(x)>0. 所以当x=1时,f(x)取极大值f(1)=5+8c. 又f(0)=8c,f(3)=9+8c. 则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c. 因为对于任意的x∈[0,3],有f(x)<c2恒成立, 所以9+8c<c2, 解得c<-1或c>9. 因此c的取值范围为(-∞,-1)∪(9,+∞).

导数在实际中的应用问题 题型特点:运用导数的性质解决最优化问题是高考考查的重点、热点内容.在高考命题中多以解答题形式出现,难度一般为中等偏难题目. 知识方法:利用导数求实际问题的最大(小)值时,应注意的问题: (1)求实际问题的最大(小)值时,一定要从问题的实际意义去考虑,不符合实际意义的值应舍去.

(2)在实际问题中,由f′(x)=0常常仅解到一个根,若能判断函数的最大(小)值在x的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值. 某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3700x+45x2-10x3(单位:万元);成本函数为C(x)=460x+5000(单位:万元).又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x). (1)求利润函数P(x)及边际利润函数MP(x); (提示:利润=产值-成本) 例5

(2)问年造船量安排多少艘时,可使公司造船的年利润最大? (3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么? 【解】 (1)P(x)=R(x)-C(x)=-10x3+45x2+3240x-5000(x∈N*,且1≤x≤20); MP(x)=P(x+1)-P(x) =-30x2+60x+3275(x∈N*,且1≤x≤19). (2)P′(x)=-30x2+90x+3240 =-30(x-12)(x+9).

∵x>0,∴P′(x)=0时,x=12. ∴当0<x<12时,P′(x)>0; 当x>12时,P′(x)<0, ∴x=12时,P(x)有最大值. 即年造船量安排12艘时,可使公司造船的年利润最大.

(3)MP(x)=-30x2+60x+3275 =-30(x-1)2+3305(x∈N (3)MP(x)=-30x2+60x+3275 =-30(x-1)2+3305(x∈N*,且1≤x≤19). 所以,当x≥1时,MP(x)单调递减, 所以,单调减区间为[1,19],且x∈N*. MP(x)是减函数的实际意义,随着产量的增加,每艘利润与前一艘利润比较,利润在减少.

本部分内容讲解结束 按ESC键退出全屏播放 点此进入课件目录 谢谢使用