微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 微分描述函数变化程度 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出. 英国数学家 Newton.

Slides:



Advertisements
Similar presentations
第二章 导数与微分 主讲人:张少强 Tianjin Normal University 计算机与信息工程学院.
Advertisements

高等数学( XJD ) 第二章 导数与微分 返回 高等数学( XAUAT ) 高等数学( XJD ) 求导法则 基本公式 导 数 导 数 微 分微 分 微 分微 分 求导方法 高阶导数 微分法则 导数与微分关系图导数与微分关系图.
一、微分的定义 二、微分的几何意义 三、微分公式及微分法则 四、微分在近似计算中的应用 五、小结 思考题.
1 函数的微分 微分的定义 微分的几何意义 基本初等函数 的微分公式与 微分的运算法则 微分在近似计算中的应用 微分的近似计算 误差估计 基本初等函数的微分公式 和、差、积、商的微分法则 复合函数的微分法则.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量. 再例如, 既容易计算又是较好的近似值 问题 : 这个线性函数 ( 改变量的主要部分 ) 是否 所有函数的改变量都有 ? 它是什么 ? 如何求 ?
第三章 微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 --- 变化率 --- 切线 斜率 --- 相对误差 微分 描述函数变化程度 --- 函数值的增量 --- 绝对误差 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Fermat.
1 主要内容 : 1. 微分的概念. 2. 微分的几何意义. 3. 微分的运算 4. 微分在近似计算中的应用 2.5 微分.
一、问题提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、 微分的求解 六、 微分的应用 七、 小结.
1 大学数学教研室 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分 2016年8月19日4时39分.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第七节 函数的微分 一 、微分 概念 二、微分的几何意义 三、 基本初等函数的微分公 式与 微分运算法则 四 、小结.
1 第二节 微 分 § 微分概念 § 微分公式和运算法则 § 高阶微分 § 微分在近似计算中的应用举例 误差估计.
第三章 导数与微分 第二节 求导法则 第三节 微分及其在近似计算中的应用 微分及其在近似计算中的应用 第一节 导数的概念.
第 4 章 不定积分 4.1 不定积分的概念与基本积分公式 4.2 换元积分法 4.3 分部积分法.
复习 1. 隐函数求导法则直接对方程两边求导 2. 对数求导法 : 适用于幂指函数及某些用连乘, 连除表示的函数 3. 参数方程求导法 极坐标方程求导 转化 成立的条件?
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
第十二章 第二节 一元函数 y = f (x) 的微分 机动 目录 上页 下页 返回 结束 对二元函数的全增量是否也有类似这样的性质? 全微分.
5.4 微 分 一、微分概念 二、微分的运算法则与公式 三、微分在近似计算上的应用. 引例 一块正方形金属片受热后其边长 x 由 x 0 变到 x 0  x  考查此薄片的面积 A 的改变情况  因为 A  x 2  所以金属片面 积的改变量为  A  (x 0 
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
§1 导数的概念 §1 导数的概念 §2 求导法则 §2 求导法则 §3 参变量函数的导数 §3 参变量函数的导数 §4 高阶导数 §4 高阶导数 §5 微分§5 微分.
第 2 章 导数与微分 1.1 导数的概念 1.2 导数的运算 1.3 微分 结束 前页 结束 后页 引出导数概念的实例 例 1 平面曲线的切线斜率 曲线 的图像如图所示, 在曲线上任取两点 和 ,作割线 ,割线的斜率为 2.1 导数的概念.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
§1. 导数的概念 1. 什么是导数(值)?如何表示? 2. 导数的几何意义? 3. 函数可导与连续的关系?(了解) §2. 导数的基本运算法则 反函数的求导法则? §3. 导数的基本公式.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
第二讲:连续、导数、微分 1 函数的连续性 2 导数的概念 3 函数微分 (1) (2) (3)
第二章 导数与微分 项目三 高阶导数 项目二 函数的求导方法 项目一 导数的概念 模块一 导数. 项目一 导数的概念 一、 导数的定义 二、 可导与连续的关系 三、 基本初等函数的导数.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
微积分基本定理 2017/9/9.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
定积分习题课.
第三节 函数的求导法则 一 函数的四则运算的微分法则 二 反函数的微分法则 三 复合函数的微分法则及微分 形式不变性 四 微分法小结.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第五节 函数的微分 一、微分的概念 二、微分运算法则 三、微分在近似计算中的应用 四、微分在估计误差中的应用 第二章
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
全 微 分 欧阳顺湘 北京师范大学珠海分校
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三章 导数与微分 第一节 导数的概念 第二节 求导法则 第三节 微分及其在近似计算中的应用.
§3 微分及其运算 一、微分的定义 二、基本初等函数的微分公式与 微分运算法则.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第五节 第二章 函数的微分 一、微分的概念 二、微分运算法则 三、微分在近似计算中的应用 *四、微分在估计误差中的应用.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第一章 导数及其应用 函数的平均变化率 瞬时速度与导数.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
(1)求函数的增量Δf=Δy=f(x2)-f(x1); (2)计算平均变化率
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
2019/5/20 第三节 高阶导数 1.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
Presentation transcript:

微积分学的创始人 : 德国数学家 Leibniz 微分学 导数描述函数变化快慢 微分描述函数变化程度 都是描述物质运动的工具 ( 从微观上研究函数 ) 导数与微分 导数思想最早由法国 数学家 Ferma 在研究 极值问题中提出. 英国数学家 Newton

一、导数概念的引出 机动 目录 上页 下页 返回 结束 二、导数公式 三、二阶导数 第四节 导数与微分 第二章 四、微分

1. 曲线的切线斜率 曲线 在 M 点处的切线 割线 M N 的极限位置 M T ( 当 时 ) 割线 M N 的斜率 切线 MT 的斜率 机动 目录 上页 下页 返回 结束 一、导数概念的引出

2. 变速直线运动的瞬时速度 设质点于时刻 t 在直线上的位置的坐标为 s, s = s ( t ), 反映 了该质点的运动规律. 若令 t→t 0, 极限值 就精确地反映了质点在 时刻 t 0 这一瞬间运动的快慢程度, 称为 t 0 时刻的瞬时速度. 在 t 0 到 t 这样一段时间间隔内的平均速度 经过的路程 所用的时间 比值称为匀速运动的速度, 如果质点作变速直线运动, 如何计算它的速度呢 ? 比值 = =

两个问题的共性 : 瞬时速度 切线斜率 所求量为函数增量与自变量增量之比的极限. 类似问题还有 : 加速度 角速度 线密度 电流强度 是速度增量与时间增量之比的极限 是转角增量与时间增量之比的极限 是质量增量与长度增量之比的极限 是电量增量与时间增量之比的极限 机动 目录 上页 下页 返回 结束

定义2. 7 设函数 在点 存在, 并称此极限为 记作 : 即 则称函数 若 的某邻域内有定义, 在点 处可导, 在点 的导数. 机动 目录 上页 下页 返回 结束

运动质点的位置函数 在 时刻的瞬时速度 曲线 在 M 点处的切线斜率 机动 目录 上页 下页 返回 结束

若上述极限不存在, 在点 不可导. 若 也称 在 若函数在开区间 I 内每点都可导, 此时导数值构成的新函数称为导函数. 记作 : 就说函数 就称函数在 I 内可导. 的导数为无穷大. 机动 目录 上页 下页 返回 结束

函数的可导性与连续性的关系 注意 : 函数在点 x 连续未必可导. 反例 : 在 x = 0 处连续, 但不可导. 机动 目录 上页 下页 返回 结束

1 ) 常数函数的导数 证:证: 2 ). 幂函数的导数 证:证: 机动 目录 上页 下页 返回 结束 二、导数公式

说明: 对一般幂函数 ( 为常数 ) 例 2 如, 机动 目录 上页 下页 返回 结束

3 )正弦函数的导数 证:证: 即 类似可证得 机动 目录 上页 下页 返回 结束

4)对数函数的导数 证:证: 即 机动 目录 上页 下页 返回 结束

三、二阶导数 速度 即 加速度 即 引例:变速直线运动 机动 目录 上页 下页 返回 结束

定义. 若函数的导数 可导, 或即 或 类似地, 二阶导数的导数称为三阶导数, 阶导数的导数称为 n 阶导数, 或 的二阶导数, 记作 的导数为 依次类推, 分别记作 则称 机动 目录 上页 下页 返回 结束

四、微分 引例 : 一块正方形金属薄片受温度变化的影响, 问此薄片面积改变了多少 ? 设薄片边长为 x, 面积为 A, 则 面积的增量为 关于△ x 的 线性主部 高阶无穷小 时为 故 称为函数在 的微分 当 x 在当 x 在 取 得增量 时,时, 变到 边长由 其 机动 目录 上页 下页 返回 结束

( 其中 A 是与 Δx 无关的常数 ), 则称函数在点 可微 并且称 AΔx 为函数 y = f ( x ) 在点 处相应于自变量增量 Δx 的微分, 记作 微分的定义 定义 设函数在某区间内有定义, x 0 及 x 0 +Δx 在此区间内, 如果函数的增量 可表示为

如果 y = f ( x ) 在区间 ( a, b ) 内的每一点都可微, 则 称 f ( x ) 是区间 ( a, b ) 内的可微函数. 函数 y = f ( x ) 在任意点 x 的微分称为函数的微分, 记作 d y 或 d f (x), 即 由于 Δx = dx, 所以 从而有 因此, 导数也称为微商. 可以把它分离 而看作分式. 函数的微分

微分的几何意义 当 很小时, 则有 从而 导数也叫作微商 切线纵坐标的增量 自变量的微分, 记作 记 机动 目录 上页 下页 返回 结束

微分运算法则 : 计算函数的导数, 乘以自变量的微分.

例 求函数当时的微分

内容小结 1. 导数的实质 : 2. 导数的几何意义 : 3. 可导必连续, 但连续不一定可导 ; 4. 已学求导公式 : 增量比的极限 ; 切线的斜率 ; 机动 目录 上页 下页 返回 结束 逐阶求导法 5. 二阶导数的求法: 6. 微分 :

思考与练习 区别 : 是函数, 是数值 ; 联系 : 注意 : 有什么区别与联系 ? ? 机动 目录 上页 下页 返回 结束 函数 在某点 处的导数 与导函数 设

求双曲线 在点 处的切线和法线方程 解 所求曲线的斜率为 曲线的切线为 即 曲线在这一点的法线方程为

牛顿 (1642 – 1727) 伟大的英国数学家, 物理学家, 天文 学家和自然科学家. 他在数学上的卓越 贡献是创立了微积分 年他提出正 流数 ( 微分 ) 术, 次年又提出反流数 ( 积分 ) 术, 并于 1671 年完成《流数术与无穷级数》一书 (1736 年出版 ). 他 还著有《自然哲学的数学原理》和《广义算术》等.

莱布尼兹 (1646 – 1716) 德国数学家, 哲学家. 他和牛顿同为 微积分的创始人, 他在《学艺》杂志 上发表的几篇有关微积分学的论文中, 有的早于牛顿, 所用微积分符号也远远优于牛顿. 他还设计了作乘法的计算机, 系统地阐述二进制计 数法, 并把它与中国的八卦联系起来.