第五章 平稳时间序列预测 设当前时刻为t,我们已经知道平稳时间序列Xt在时刻t 及以前时刻的观察值Xt ,Xt-1,Xt-2… ,现在用序列Xt对时刻t以后的观察值Xt+l(l>0)进行预测。这种预测称为以t 为原点,向前步长为l的预测,预测值记为.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第九章 常微分方程数值解法 §1 、引言. 微分方程的数值解:设方程问题的解 y(x) 的存在区间是 [a,b] ,令 a= x 0 < x 1
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
第 4 章 数值微积分. 4.1 内插求积 Newton-Cotes 公式 第 4 章 数值微积分 4.1 内插求积 Newton-Cotes 公式.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
«地学建模» 之 “随机时间序列分析模型”.
§3.4 空间直线的方程.
3.4 空间直线的方程.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、能线性化的多元非线性回归 二、多元多项式回归(线性化)
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
第二章 平稳时间序列模型(单变量) 选择单变量时间序列的原因
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第七章 时间序列预测法.
量化视角下的豆粕投资机会分析 格林期货研发培训中心 郭坤龙.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
不确定度的传递与合成 间接测量结果不确定度的评估
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
Examples for transfer function
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第一章 商品 第一节 价值创造 第二节 价值量 第三节 价值函数及其性质 第四节 商品经济的基本矛盾与利己利他经济人假设.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录.
元素替换法 ——行列式按行(列)展开(推论)
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第十章 方差分析.
28.1 锐角三角函数(2) ——余弦、正切.
第七章 参数估计 7.3 参数的区间估计.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第一章 函数与极限.
数列.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
6.4不等式的解法举例(1) 2019年4月17日星期三.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三章 平稳时间序列分析.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
教学大纲(甲型,54学时 ) 教学大纲(乙型, 36学时 )
Volterra-Lotka方程 1925年, A. Lotka(美)和V. Volterra(意)给出了第一个两物种间的捕食模型。
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
Presentation transcript:

第五章 平稳时间序列预测 设当前时刻为t,我们已经知道平稳时间序列Xt在时刻t 及以前时刻的观察值Xt ,Xt-1,Xt-2… ,现在用序列Xt对时刻t以后的观察值Xt+l(l>0)进行预测。这种预测称为以t 为原点,向前步长为l的预测,预测值记为

第一节 正交投影预测(几何预测) 在 已知的条件下,对 进行预测,一个常用而简单的函数形式就是 的线形组合形式,即 余下的问题就是求得系数 使 与 最接近。

正交投影预测几何示意图 在 从图中可以看出,一个“最佳”的选择就是 所形成平面上的正交投影。

根据平稳序列的传递形式, 序列的线性组合形式,因此 可以表示为 所形成平面也是 所形成平面,且 为一组正交基。 因而有: 因而,求解 的问题就转化为求解

预测误差 与平面中每个 基正交,即有 解之有 即最后的预测函数为

预测误差为 其方差为 从上式可以看出L步预测的的方差和步长L有关而与起点t无关,且步长L越大,预测误差的方差越大。

第二节 条件期望预测 正交投影预测在线性条件下具有最小的均方误差,而一个更一般条件下的预测为基于条件期望的预测。 条件期望 所谓条件期望,是指在一定条件下的期望值。例如, 在已知 的条件下, 的期望值称为 的条件期望,记为: 或

条件期望的性质 性质一: 性质二: 性质三: 性质1表明:条件期望满足线性运算法则;性质2表明:现在或过去观察值的条件期望是其本身,未来取值的条件期望是其预测值;性质3表明:现在或过去的残差的条件期望是它的估计值,未来残差的条件期望则为零。

用模型的逆转形式进行预测 任一ARMA模型可用逆转形式来表示,即将xt表示为过去观测值的线性组合再加一个随机扰动:

用差分方程形式进行预测 AR(1)模型

MA(1)模型

ARMA(1,1)模型

即当 l>1时,预测值满足模型自回归部分差分方程 做为初始值,解此差分方程得预测值为

ARMA(m,n)模型预测的一般结果 其中对于

结论:对一般的ARMA(n,m)模型,自回归部分决定了预测函数的形式,而滑动平均部分用于确定预测函数中的系数。 由于

由前面知 实际计算中用下式替代

第三节 实时修正预测 随着时间的推移,某些先前需要预测的未来信息已经变为现实,原来的时间序列预测模型可能没有反应这种现实的变化,此时有两种选择,一种是重新建立预测模型,另一种更好的选择是对原有预测模型进行实时修正。

实时修正预测的具体方法: 对于一个ARMA过程,由 得: 因此:

式中, 为一步预测误差。 结论:新的预测值是在旧的预测值基础上加一个修正项,而这一修正项比例于旧的一步预测误差,比例系数随预测超前步数而变化。 例:P138。

第四节 指数平滑预测——ARMA模型特例 指数平滑预测 预测公式: 其中:

指数平滑两个重要公式 指数平滑与ARMA模型的关系 指数平滑预测公式:

如果预测误差为 ,则: 若在t-1时刻,则 上式正是模型 的逆转形式。

反之,若以该模型的逆转形式进行预测,可得: 此即为指数平滑预测。 结论:指数平滑预测与ARMA(1,1)模型在 时的特殊情况下的预测等价。

本章回顾 正交投影预测 条件期望预测 实时修正预测 ARMA模型特例---指数平滑预测