练习 1。点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值 范围是 2.点P( )与圆x2+y2=1的位置关系是 ( )

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

§3.4 空间直线的方程.
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
代数方程总复习 五十四中学 苗 伟.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
4.1.2 圆的一般方程 南溪中学 周翔.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
圆锥曲线复习.
4.1.2 圆的一般方程.
第2章 平面解析几何初步 圆的方程(2).
§4.1.2 圆的一般方程.
巫山职教中心欢迎您.
1.2.2函数的表示法 圆的一般方程 (第一课时) 高二数学组 平度九中---张杰
直线与双曲线的位置关系.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
圆的方程复习.
18.2一元二次方程的解法 (公式法).
圆 的 标 准 方 程.
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
圆的一般方程 x2+y2+Dx+Ey+F=0 O C M(x,y).
4.1.2  圆的一般方程.
圆复习.
姓名:曹 琳 学科:数 学 广州市第十六中学.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
1.设圆的圆心是C(a,b),半径为r,则圆的标准方程是(x-a)2+(y-b)2=r2
圆的方程 (一).
七(7)中队读书节 韩茜、蒋霁制作.
2.2.1椭圆的标准方程 (第二课时).
直线与圆的位置关系 市一中 九年级数学组.
第三章 《圆》复习 第二课时 与圆有关的位置关系
圆 与 的 位 置 关 系 圆与圆的位置关系 新县第三初级中学 邱家胜.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
九年级数学(上)第五章 直线与圆的位置关系.
3、6 圆与圆的位置关系.
第8课时 直线和圆的 位置关系(2).
点与圆的位置关系 云衢中学 孟战军.
直线和圆的位置关系.
直线和圆的位置关系(4).
第4讲 直线与圆、圆与圆的位置关系.
练习 1。点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值 范围是 2.点P( )与圆x2+y2=1的位置关系是 ( )
天才就是百分之一的灵感,百分之九十九的汗水!
北师大版(必修2) 课题:§2.3 直线与圆的位置关系 授课教师:韩伟 年级:高中一年级 单位:阜师院附中.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
第四章 圆与方程 圆的标准方程 圆的一般方程.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
2.1.2 空间中直线与直线 之间的位置关系.
圆锥曲线的统一定义.
3.4 圆心角(1).
3.3 垂径定理 第2课时 垂径定理的逆定理.
直线和圆的位置关系.
直线与圆的位置关系.
28.1 圆 泊头市第三中学 杨秀云.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
抛物线的几何性质.
▲重合的概念 ▲對應頂點、對應邊、對應角 ▲全等的記法 ▲全等性質 ▲三角形全等性質
直线和圆的位置关系 ·.
一元二次不等式解法(1).
3.4圆周角(一).
直线的倾斜角与斜率.
双曲线及其标准方程(1).
直线系应用.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
位似.
Xue.
一元一次方程的解法(-).
2.2 椭 圆 椭圆及其标准方程.
Presentation transcript:

练习 1。点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值 范围是 . 2.点P( )与圆x2+y2=1的位置关系是 ( ) A 在圆内 B在圆外 C 在圆上 D与t有关

知识回顾: (1) 圆的 标准方程: 特征: 直接看出圆心与半径 指出下面圆的圆心和半径: (x-a)2+(y-b)2=r2 (1) 圆的 标准方程: (x-a)2+(y-b)2=r2 特征: 直接看出圆心与半径 指出下面圆的圆心和半径: (x-1)2+(y+2)2=2 (x+2)2+(y-2)2=5 (x+a)2+(y-2)2=a2 (a≠0)

x2 +y 2+Dx+Ey+F=0 - 2 = + r b a by ax y x 结论:任何一个圆方程可以写成下面形式: 展开,得 把圆的 标准方程(x-a)2+(y-b)2=r2 展开,得 - 2 = + r b a by ax y x 由于a,b,r均为常数 结论:任何一个圆方程可以写成下面形式: x2 +y 2+Dx+Ey+F=0

x2 +y 2+Dx+Ey+F=0 问:是不是任何一个形如 结论:任何一个圆方程可以写成下面形式: 的曲线是圆呢? 请举例

(2)当D2+E2-4F=0时,方程只有一组解X=-D/2 y=-E/2,表示一个点( ) 把方程:x2 +y 2+Dx+Ey+F=0 配方可得: (1)当D2+E2-4F>0时,表示以( ) 为圆心,以( ) 为半径的圆 (2)当D2+E2-4F=0时,方程只有一组解X=-D/2 y=-E/2,表示一个点( ) (3)当D2+E2-4F<0时,方程(1)无实数解,所以 不表示任何图形。 所以形如x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0)可表示圆的方程

圆的一般方程: x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0) (2)标准方程易于看出圆心与半径 圆的一般方程与标准方程的关系: (1)a=-D/2,b=-E/2,r= (2)标准方程易于看出圆心与半径 一般方程突出形式上的特点: x2与y2系数相同并且不等于0; 没有xy这样的二次项

练习: 判断下列方程能否表示圆的方程, 若能写出圆心与半径 (1)x2+y2-2x+4y-4=0 是 是 圆心(1,-2)半径3 是 (2)2x2+2y2-12x+4y=0 圆心(3,-1)半径 不是 (3)x2+2y2-6x+4y-1=0 不是 (4)x2+y2-12x+6y+50=0 (5)x2+y2-3xy+5x+2y=0 不是

x2 +y 2+Dx+Ey+F=0 二元二次方程 表示圆的一般方程 圆的一般方程: 二元二次方程:A x2 +Bxy+Cy 2+Dx+Ey+F=0 的关系: x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0) 1、A = C ≠ 0 二元二次方程 表示圆的一般方程 2、B=0 3、 D2+E2-4AF>0

9. [简单的思考与应用] (1)已知圆 的圆心坐标为 (-2,3),半径为4,则D,E,F分别等于 是圆的方程的等价条件是 (3)圆 与 轴相切,则这个圆截 轴所得的弦长是

(4)点 是圆 的一条弦的中点, 则这条弦所在的直线方程是

经验积累: 注:用待定系数法求圆的方程的步骤: 1.根据题意设出所求圆的方程为标准式或一般式。 2.根据条件列出关于a,b,c或D,E,F的方程。 3.解方程组,求出a,b,c或D,E,F的值,代入方程,就得到要求的方程.

1 2 例2:已知一曲线是与两个定点O(0,0), A(3,0)距离的比为 的点的轨迹, 求此曲线的方程,并画出曲线。 直译法 y . x (-1,0) A(3,0) M(x,y) 直译法

知a、b、r (x-a)2+(y-b)2=r2 展开 配方 圆的方程 D2+E2 -4F>0 X2+y2+Dx+Ey+F=0

例题巩固: 例1.方程x2+y2+4mx-2y+5m=0表示圆时,m的取值范围是(    )