复变函数 第2讲 本文件可从网址 http://math.vip.sina.com 上下载 (单击ppt讲义后选择‘复变函数'子目录)

Slides:



Advertisements
Similar presentations
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
Advertisements

第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
佛教陳榮根紀念學校 姜曉霞老師、吳麗媚老師 元朗區小學教師發展日 二年級喜閱寫意校本整合 寫作教學.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
第八章 互换的运用.
8.4 幂级数 主要内容: 1. 函数项级数的概念 2.幂级数及其收敛域 3、幂级数的运算性质 4、泰勒级数.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
2.2.1 等比数列的概念和通项公式.
第三章 函数逼近 — 最佳平方逼近.
德国心理学家艾宾浩斯最早对遗忘进行 了系统研究,遗忘在学习之后立即开始,而 且遗忘的过程最初进行的很快,以后渐趋缓
第四章 解析函数 的级数展开.
第二节 常数项级数的审敛法 一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 第十二章
《高等数学》(理学) 常数项级数的概念 袁安锋
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
数学分析 江西财经大学 统计学院 2012级 密码: sxfx2012
CH 4 级数 1、复数项级数 2、幂级数 3、泰勒(Taylor)级数 4、罗朗(Laurent)级数.
复变函数 第11讲 本文件可从网址 上下载.
第四章 级数 §1 复数项级数.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
复变函数 第7讲 本文件可从网址 上下载 (单击ppt讲义后选择‘复变函数'子目录)
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
定积分习题课.
第十八章 含参变量的反常积分 教学目标: 1°使学生掌握含参变量反常积分概念; 2°使学生学会用定义证明含参变量反常积分收敛性。
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§1 幂 级 数 一、幂级数的收敛区间 二、幂级数的性质
项目四 无穷级数 学习任务一:  数项级数的概念和性质 一、数项级数及其收敛性 二、数项级数的基本性质 三、数项级数收敛的必要条件.
第十一章 无穷级数 返回.
计算机数学基础 主讲老师: 邓辉文.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
第一章 函数与极限.
实数与向量的积.
第九章 数项级数 §9.1 级数的收敛性 §9.2 正项级数 §9.3 一般项级数.
实验一 计算复变函数极限、微分、积分、 留数、泰勒级数展开式 (一) 实验类型:验证性 (二) 实验类别:基础实验
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
第4课时 绝对值.
(The representation of power series of analytic function)
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2019/5/20 第三节 高阶导数 1.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
§2 方阵的特征值与特征向量.
第六部分 级数 但稍加思考可能发现, 应该应如何计算诸如sin15、e2、ln2等这些值的?这时, 借助于级数加以讨论是最好的方法之一.
第二节 第十二章 常数项级数的审敛法 一、正项级数及其审敛法 二、交错级数及其审敛法 三、绝对收敛与条件收敛 *四、绝对收敛级数的性质.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
第六模块 无穷级数 第五节 函数的幂级数展开 一、 麦克劳林 (Maclaurin) 公式 二、 直接展开法 三、 间接展开法.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
Presentation transcript:

复变函数 第2讲 本文件可从网址 http://math.vip.sina.com 上下载 (单击ppt讲义后选择‘复变函数'子目录)

本文件也可在网址 http://math. shekou. com 或者 ftp://math. shekou 本文件也可在网址 http://math.shekou.com 或者 ftp://math.shekou.com 获得 或者在网址 ftp://chenbihong.skxxd.com 获得

第四章 级数 §1 复数项级数

1. 复数列的极限 设{an}(n=1,2,. )为一复数列, 其中an=an+ibn, 又设a=a+ib为一确定的复数 1. 复数列的极限 设{an}(n=1,2,...)为一复数列, 其中an=an+ibn, 又设a=a+ib为一确定的复数. 如果任意给定e>0, 相应地能找到一个正数N(e), 使|an-a|<e在n>N时成立, 则a称为复数列{an}当n时的极限, 记作 此时也称复数列{an}收敛于a.

定理一 复数列{an}(n=1,2,...)收敛于a的充要条件是 [证] 如果 , 则对于任意给定的e>0, 就能找到一个正数N, 当n>N时,

反之, 如果

2. 级数概念 设{an}={an+ibn}(n=1,2,...)为一复数列, 表达式 sn=a1+a2+...+an 称为级数的部分和. 如果部分和数列{sn}收敛,

定理二 级数 收敛的充要条件是级数 和 都收敛 [证] 因sn=a1+a2+. +an=(a1+a2+. +an). +i(b1+b2+ 定理二 级数 收敛的充要条件是级数 和 都收敛 [证] 因sn=a1+a2+...+an=(a1+a2+...+an) +i(b1+b2+...+bn)=sn+itn, 其中sn=a1+a2+...+an, tn=b1+b2+...+bn分别为 和 的部分和, 由定理一, {sn}有极限存在的充要条件是{sn}和{tn}的极限存在, 即级数 和 都收敛.

定理二将复数项级数的审敛问题转化为实数项级数的审敛问题.

定理三 [证]

另外, 因为 的各项都是非负的实数, 所以它的收敛也可用正项级数的判定法来判定. 另外, 因为 的各项都是非负的实数, 所以它的收敛也可用正项级数的判定法来判定.

例1 下列数列是否收敛? 如果收敛, 求出其极限.

[解] 1) 因

2) 由于 an=n cos in=n ch n,因此, 当n时, an. 所以an发散.

例2 下列级数是否收敛? 是否绝对收敛?

[解] 1) 因 发散 收敛 故原级数发散.

2) 因 , 由正项级数的比值审敛法知 收敛, 故原级数收敛, 且为绝对收敛. 2) 因 , 由正项级数的比值审敛法知 收敛, 故原级数收敛, 且为绝对收敛.

3) 因 收敛; 也收敛, 故原级数收敛. 但因 为条件收敛, 所以原级数非绝对收敛. 3) 因 收敛; 也收敛, 故原级数收敛. 但因 为条件收敛, 所以原级数非绝对收敛.

§2 幂级数

1. 幂级数的概念 设{fn(z)}(n=1,2,...)为一复变函数序列,其中各项在区域D内有定义.表达式 sn(z)=f1(z)+f2(z)+...+fn(z) 称为这级数的部分和.

如果对于D内的某一点z0, 极限 存在, 则称复变函数项级数(4.2.1)在z0收敛, 而s(z0)称为它的和. 如果级数在D内处处收敛, 则它的和一定是z的一个函数s(z): s(z)=f1(z)+f2(z)+...+fn(z)+... s(z)称为级数 的和函数

当fn(z)=cn-1(z-a)n-1或fn(z)=cn-1zn-1时, 就得到函数项级数的特殊情形: 这种级数称为幂级数. 如果令z-a=z, 则(4.2.2)成为 , 这是 (4.2.3)的形式, 为了方便, 今后常就(4.2.3)讨论

定理一(阿贝尔Abel定理) y z0 O x

[证]

2. 收敛圆和收敛半径 利用阿贝尔定理, 可以定出幂级数的收敛范围, 对一个幂级数来说, 它的收敛情况不外乎三种: i) 对所有的正实数都是收敛的. 这时, 根据阿贝尔定理可知级数在复平面内处处绝对收敛. ii) 对所有的正实数除z=0外都是发散的. 这时, 级数在复平面内除原点外处处发散. iii) 既存在使级数收敛的正实数, 也存在使级数发散的正实数. 设z=a(正实数)时, 级数收敛, z=b(正实数)时, 级数发散.

显然a<b, 将收敛域染成红色, 发散域为蓝色. y Cb R CR Ca a O b x

当a由小逐渐变大时, Ca必定逐渐接近一个以原点为中心, R为半径的圆周CR. 在CR的内部都是红色, 外部都是蓝色 当a由小逐渐变大时, Ca必定逐渐接近一个以原点为中心, R为半径的圆周CR. 在CR的内部都是红色, 外部都是蓝色. 这个红蓝两色的分界圆周CR称为幂级数的收敛圆. 在收敛圆的外部, 级数发散. 收敛圆的内部, 级数绝对收敛. 收敛圆的半径R称为收敛半径. 所以幂级数(4.2.3)的收敛范围是以原点为中心的圆域. 对幂级数(4.2.2)来说, 收敛范围是以z=a为中心的圆域. 在收敛圆上是否收敛, 则不一定.

例1 求幂级数 的收敛范围与和函数. [解] 级数实际上是等比级数, 部分和为

3.收敛半径的求法

例2 求下列幂级数的收敛半径

4. 幂级数的运算和性质 象实变幂级数一样, 复变幂级数也能进行有理运算. 设 4. 幂级数的运算和性质 象实变幂级数一样, 复变幂级数也能进行有理运算. 设 在以原点为中心, r1,r2中较小的一个为半径的圆内, 这两个幂级数可以象多项式那样进行相加, 相减, 相乘, 所得到的幂级数的和函数分别就是f(z)与g(z)的和,差与积.

更为重要的是代换(复合)运算 这个代换运算, 在把函数展开成幂级数时, 有着广泛的应用.

当|z-a|<|b-a|=R时 级数收敛 y b a O x

3) f(z)在收敛圆内可以逐项积分, 即

作业 第四章习题 第141页开始 第1题 第6题1),2),3),4)小题 作业 第四章习题 第141页开始 第1题 第6题1),2),3),4)小题